
Implementation of Statistical Methods in SPSS Software
Abstract
The integration of statistical methods into data analysis is essential across scientific disciplines, ensuring rigor and validity in empirical research. Among the various software tools available for statistical processing, IBM’s Statistical Package for the Social Sciences (SPSS) has become one of the most widely adopted platforms due to its user-friendly interface and robust analytical capabilities. This article explores the implementation of key statistical methods in SPSS software, analyzing its theoretical foundations, practical applications, and implications for empirical research. The study details the core functions and methodological features of SPSS, discusses challenges and advantages of its use, and examines the impact of SPSS-enabled analyses on research reliability and reproducibility. Real-world examples from diverse fields are considered to illustrate the versatility and depth of SPSS’s statistical toolset. The discussion highlights considerations for researchers in selecting appropriate statistical techniques and optimizing workflow within SPSS. The article concludes by reflecting on the software’s role in modern data analysis and the future trajectory of statistical computing.
Keywords
SPSS, statistical analysis, data processing
References
IBM Corp. IBM SPSS Statistics for Windows, Version 29.0. Armonk, NY: IBM Corp., 2022.
Field, A. Discovering Statistics Using IBM SPSS Statistics. 5th Edition. London: Sage Publications, 2018.
Pallant, J. SPSS Survival Manual: A Step by Step Guide to Data Analysis Using IBM SPSS. 7th Edition. London: Open University Press, 2020.
Gravetter, F.J., & Wallnau, L.B. Statistics for the Behavioral Sciences. 10th Edition. Boston: Cengage Learning, 2017.
Bryman, A., & Cramer, D. Quantitative Data Analysis with SPSS for Windows: A Guide for Social Scientists. London: Routledge, 2005.
Green, S.B., & Salkind, N.J. Using SPSS for Windows and Macintosh: Analyzing and Understanding Data. 8th Edition. Boston: Pearson, 2016.
Tabachnick, B.G., & Fidell, L.S. Using Multivariate Statistics. 7th Edition. Boston: Pearson, 2019.
Петухов В.В., Фомин С.В. Практика применения статистических методов в программе SPSS. Москва: КНОРУС, 2016.
Хохлов А.В. SPSS: статистическая обработка данных и анализ результатов. Санкт-Петербург: Питер, 2017.
Лапач С.Н., Яновская О.А., Бондаренко Г.В. Статистические методы в медицинских исследованиях с использованием SPSS. Киев: Морион, 2016.
Article Statistics
Downloads
Copyright License
Copyright (c) 2025 Saparbaeva Dilbar Adilovna

This work is licensed under a Creative Commons Attribution 4.0 International License.