
Development of Modern Test Technologies and Assessment Criteria in Mathematics
Abstract
The accelerating digital transformation of education has invigorated research on measurement tools capable of capturing mathematical achievement with precision, scalability, and pedagogical fairness. This study analyzes contemporary trajectories in the design of mathematics tests, emphasizing adaptive computer‐based formats, item‐response–theory (IRT) modeling, and analytics-driven feedback systems. Drawing on a mixed corpus of empirical evidence from secondary and tertiary contexts, we contrast traditional fixed-form examinations with algorithmically generated item banks and intelligent tutoring back-ends. Methodologically, we synthesize psychometric simulations with field trials involving 1 246 learners in Uzbekistan and the Russian Federation. Results reveal statistically significant gains in diagnostic reliability and decision validity when adaptive sequencing and real-time error analysis inform test assembly. Discussion addresses implications for national qualification frameworks and for the Higher Attestation Commission’s mandate to align assessment with competency-based curricula. The article concludes by proposing an integrative model wherein formative analytics, cognitive complexity metrics, and equity safeguards coalesce to guide future mathematics assessment.
Keywords
Mathematics assessment, adaptive testing, item response theory, digital analytics
References
Гусев В. Н. Психометрия в образовании: проблемы и перспективы // Педагогические измерения. – 2019. – Т. 6, № 2. – С. 5–18.
Kane M. Validation in Educational Measurement. – New York: Springer, 2016. – 483 p.
Алексеев Л. Г., Пономарёв А. А. Компьютерные тесты и ITEM Response Theory // Вестник МГУ. Серия 14. Психология. – 2020. – № 4. – С. 42–61.
OECD. PISA 2022 Technical Report. – Paris: OECD Publishing, 2024. – 812 p.
Высшая аттестационная комиссия Республики Узбекистан. Методические рекомендации по подготовке диссертаций. – Ташкент, 2023. – 56 с.
Wiechmann D., Kroehne U. Adaptive Testing in Mathematics: A Meta-Analysis // Journal of Educational Measurement. – 2022. – Vol. 59, No. 3. – P. 340–367.
Shadiev R., Huang R. Cross-Cultural Considerations in Digital Assessment // Computers & Education. – 2021. – Vol. 173. – 104298.
Veldkamp B. P., Sluijter C. M. Designing Multistage Tests. – Cham: Springer, 2023. – 297 p.
Nicol D. J. Resituating Feedback Dialogues // Assessment & Evaluation in Higher Education. – 2020. – Vol. 45, No. 5. – P. 757–775.
Ганиев Ш. К. Информационные технологии в подготовке учителей математики. – Ташкент: Fan, 2022. – 214 с.
Zhang M., Yin Y. AI-Based Diagnostic Assessment in Algebra // Computers in Human Behavior. – 2023. – Vol. 139. – 107512.
Рахматов Б. С. Языковая эквивалентность в двуязычных тестах // Язык и культура. – 2024. – № 1. – С. 87–99.
Brown G. Improving Assessments for Learning. – London: Routledge, 2020. – 268 p.
Мирзаев Х. Д. Адаптивное тестирование: проблемы внедрения в школах // Народное образование. – 2023. – № 7. – С. 44–52.
Wainer H. Computerized Adaptive Testing: A Primer. – 3rd ed. – New York: Routledge, 2021. – 388 p.
Article Statistics
Downloads
Copyright License
Copyright (c) 2025 Raxmonov Ixtiyor Xusanovich

This work is licensed under a Creative Commons Attribution 4.0 International License.