Articles
| Open Access | From Model-Centric to Data-Centric AI Governance: Strengthening Accountability, Transparency, and Equity
Abstract
The emergence of data‑centric governance paradigms in artificial intelligence (AI) reflects a paradigmatic shift away from traditional model‑centric approaches toward frameworks that prioritize data quality, transparency, accountability, and compliance with socio‑legal norms. This research article presents a comprehensive examination of data‑centric governance models, with a particular focus on the integration of trustworthy AI principles into welfare management systems and other socio‑technical domains. Drawing on interdisciplinary literature from computer science, policy studies, ethics, and data engineering, this work elaborates theoretical foundations, articulates methodological constructs, and critically evaluates the operational and governance challenges associated with data‑centric AI. The article synthesizes insights from major scholarly contributions, including perspectives on anomaly detection in time series data, data augmentation strategies, quality profiling tools, and data traceability frameworks, to establish a cohesive narrative on how data‑centric governance can reconcile innovation with ethical imperatives. Central to this discussion is the integration of frameworks that emphasize transparency, bias control, and policy compliance, as outlined by Uddandarao et al. (2026), within welfare management and beyond. The article also interrogates the broader implications of data‑centric AI within contemporary socio‑technical contexts, presents a critical discussion of empirical and theoretical debates, and proposes a forward‑looking research agenda for advancing governance frameworks that align technological capabilities with societal expectations. Through an in‑depth review, theoretical elaboration, and analytical interpretation of interdisciplinary research, this article contributes to both scholarly discourse and policy practice concerning trustworthy and equitable AI.
Keywords
Data‑centric governance, trustworthy AI, transparency, bias control
References
Miranda, L.J. Towards Data-Centric Machine Learning: A Short Review. 2021. Available online: https://ljvmiranda921.github.io/notebook/2021/07/30/data-centric-ml/
Zha, D.; Bhat, Z.P.; Lai, K.H.; Yang, F.; Hu, X. Data-centric ai: Perspectives and challenges. In Proceedings of the 2023 SIAM International Conference on Data Mining (SDM), 2023; pp. 945–948.
Chorev, S.; Tannor, P.; Israel, D.B.; Bressler, N.; Gabbay, I.; Hutnik, N.; Liberman, J.; Perlmutter, M.; Romanyshyn, Y.; Rokach, L. Deepchecks: A library for testing and validating machine learning models and data. J. Mach. Learn. Res. 2022, 23, 1–6.
Luley, P.P.; Deriu, J.M.; Yan, P.; Schatte, G.A.; Stadelmann, T. From concept to implementation: The data-centric development process for AI in industry. In Proceedings of the 2023 10th IEEE Swiss Conference on Data Science (SDS), 2023; pp. 73–76.
Ng, A. MLOps: From Model-Centric to Data-Centric AI. 2021. Available online: https://www.youtube.com/watch?v=06-AZXmwHjo
Uddandarao, D.P.; Valiveti, S.S.; Varanasi, S.R.; Rahman, H.; Chakraborty, P. Data-Centric Governance Models Using Trustworthy AI: Strengthening Transparency, Bias Control, and Policy Compliance in Welfare Management. International Journal on Engineering Artificial Intelligence Management, Decision Support, and Policies, 2(4), 29–44. https://doi.org/10.63503/j.ijaimd.2025.200
Hegde, C. Anomaly Detection in Time Series Data using Data-Centric AI. In Proceedings of the 2022 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), 2022; pp. 1–6.
Holstein, J. Bridging Domain Expertise and AI through Data Understanding. In Proceedings of the 29th International Conference on Intelligent User Interfaces, 2024; pp. 163–165.
Liang, W.; Tadesse, G.A.; Ho, D.; Fei-Fei, L.; Zaharia, M.; Zhang, C.; Zou, J. Advances, challenges and opportunities in creating data for trustworthy AI. Nat. Mach. Intell. 2022, 4, 669–677.
Majeed, A.; Hwang, S.O. Data-Centric AI, Pre-Processing, and the Quest for Transformative AI Systems Development. Computer 2023, 56, 1–6.
Picard, A.M.; Hervier, L.; Fel, T.; Vigouroux, D. Influenciæ: A Library for Tracing the Influence Back to the Data-Points. 2023.
Bertucci, D.; Hamid, M.M.; Anand, Y.; Ruangrotsakun, A.; Tabatabai, D.; Perez, M.; Kahng, M. DendroMap: Visual exploration of large-scale image datasets for machine learning with treemaps. IEEE Trans. Vis. Comput. Graph. 2022, 29, 320–330.
Motamedi, M.; Sakharnykh, N.; Kaldewey, T. A data-centric approach for training deep neural networks with less data. arXiv 2021, arXiv:2110.03613.
Parashar, M.; DeBlanc-Knowles, T.; Gianchandani, E.; Parker, L.E. Strengthening and democratizing artificial intelligence research and development. Computer 2023, 56, 85–90.
Clemente, F.; Ribeiro, G.M.; Quemy, A.; Santos, M.S.; Pereira, R.C.; Barros, A. ydata-profiling: Accelerating data-centric AI with high-quality data. Neurocomputing 2023, 554, 126585.
Sculley, D.; Holt, G.; Golovin, D.; Davydov, E.; Phillips, T.; Ebner, D.; … & Dennison, D. Hidden technical debt in machine learning systems. Advances in neural information processing systems 28 (2015).
Whang, S.E.; Roh, Y.; Song, H.; Lee, J.G. Data collection and quality challenges in deep learning: A data-centric AI perspective. VLDB J. 2023, 32, 791–813.
Polyzotis, N.; Zaharia, M. What can data-centric AI learn from data and ML engineering? arXiv 2021, arXiv:2112.06439.
Feast. "Introduction" Feast Feature Store. https://docs.feast.dev/
Song, H.; Kim, M.; Lee, J.G. Toward robustness in multi-label classification: A data augmentation strategy against imbalance and noise. In Proceedings of the AAAI Conference on Artificial Intelligence, 2024; pp. 21592–21601.
Zhu, W.; Wu, O.; Yang, N. IRDA: Implicit Data Augmentation for Deep Imbalanced Regression. Inf. Sci. 2024, 6, 120873.
Roh, Y.; Heo, G.; Whang, S.E. A survey on data collection for machine learning: a big data-ai integration perspective. IEEE Transactions on Knowledge and Data Engineering 33.4 (2019): 1328-1347.
Kumar, S.; Datta, S.; Singh, V.; Singh, S.K.; Sharma, R. Opportunities and Challenges in Data-Centric AI. IEEE Access 2024.
Hamid, O.H. From model-centric to data-centric AI: A paradigm shift or rather a complementary approach? In Proceedings of the 2022 8th International Conference on Information Technology Trends (ITT), 2022; pp. 196–199.
Patel, H. Data-Centric Approach vs ModelCentric Approach in Machine Learning. Neptune.ai, 25 April 2025. https://neptune.ai/blog/data-centric-vs-modelcentric-machine-learning
Aldoseri, A.; Al-Khalifa, K.N.; Hamouda, A.M. Re-thinking data strategy and integration for artificial intelligence: Concepts, opportunities, and challenges. Appl. Sci. 2023, 13, 7082.
Mitchell, M.; Luccioni, A.S.; Lambert, N.; Gerchick, M.; McMillan-Major, A.; Ozoani, E.; Rajani, N.; Thrush, T.; Jernite, Y.; Kiela, D. Measuring data. arXiv 2022, arXiv:2212.05129.
Bommasani, R.; Hudson, D.A.; Adeli, E.; Altman, R.; Arora, S.; von Arx, S.; … & Liang, P. On the opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258 (2021).
Federal Reserve. Supervisory Guidance on Model Risk Management. Board of Governors of the Federal Reserve System. April 4, 2011. https://www.federalreserve.gov/supervisionreg/srletters/sr1107.htm
John China, How JPMorgan Chase is preparing the workforce for the future of AI. August 13, 2024. https://www.jpmorganchase.com/newsroom/stories/how-jpmc-is-preparing-workforce-for-ai
Mayo Clinic, Mayo Clinic Research Core Facilities: Office of Core Shared Services. https://www.mayo.edu/research/corefacilities/services/data-analytics
Bertocci, D.; Hamid, M.M.; Anand, Y.; Ruangrotsakun, A.; Tabatabai, D.; Perez, M.; Kahng, M. DendroMap: Visual exploration of large-scale image datasets for machine learning with treemaps. IEEE Trans. Vis. Comput. Graph. 2022, 29, 320–330.
Article Statistics
Copyright License
Copyright (c) 2026 Theodore R. Kingsford

This work is licensed under a Creative Commons Attribution 4.0 International License.