Articles | Open Access |

Optimizing Nitrogen Application for Alfalfa Yield Across Varying Precipitation Regimes Using the APSIM Model

Dr. Elena R. Petrova , Department of Crop Science, National Agricultural University of Ukraine, Kyiv, Ukraine
Prof. Marcus A. Rodriguez , Department of Soil and Crop Sciences, Colorado State University, Fort Collins, USA

Abstract

Background: Alfalfa (Medicago sativa L.) is a vital forage crop, but optimizing nitrogen (N) application remains crucial for maximizing yield and minimizing environmental impact, especially under variable climatic conditions. Precipitation regimes significantly influence N dynamics and plant growth, necessitating tailored N management strategies. Agricultural systems models, such as APSIM (Agricultural Production Systems sIMulator), offer powerful tools for simulating complex crop-soil-weather interactions to inform management decisions.

Objective: This study aimed to utilize the APSIM model to determine optimal nitrogen application rates for alfalfa yield across varying precipitation regimes (wet, normal, and dry years).

Methods: The APSIM model was calibrated and validated using observed alfalfa growth, yield, and soil N data from a representative agricultural region. Historical weather data were analyzed to define distinct wet, normal, and dry year precipitation scenarios. Subsequently, a range of N application rates (0 to 250 kg N ha$^{-1}$) were simulated for alfalfa under each precipitation regime. Key output variables included alfalfa hay yield, water use efficiency (WUE), and nitrogen use efficiency (NUE). Statistical analyses were performed to identify optimal N rates for each scenario.

Results: The APSIM model demonstrated robust performance in simulating alfalfa yield and N uptake (R2 > 0.85). Simulation results indicated that optimal N application rates varied significantly with precipitation. In wet years, higher N rates (e.g., 150 kg N ha$^{-1})maximizedyield,whilenormalyearsrequiredmoderaterates(e.g.,100kgNha^{-1}).DryyearsshoweddiminishingreturnsorevennegativeimpactswithincreasingN,suggestingloweroptimalrates(e.g.,50kgNha^{-1}$) or even reliance on biological N fixation. These varying optimal rates also influenced WUE and NUE, with more efficient resource use observed when N application aligned with water availability.

Conclusion: The APSIM model provides a valuable framework for optimizing N application in alfalfa production. Tailoring N management based on anticipated precipitation regimes can significantly enhance alfalfa yield, improve resource use efficiency, and promote more sustainable agricultural practices. These findings underscore the importance of climate-adaptive nutrient management for future forage production.  

Keywords

APSIM model, Alfalfa, Nitrogen optimization

References

Han, X.W.; Wu, K.; Fu, X.D.; Liu, Q. Improving coordination of plant growth and nitrogen metabolism for sustainable agriculture. aBIOTECH 2020, 1, 255–275.

Zhang, Q.Z.; Hao, G.; Li, H.Y. Research progress on the effectiveness and form of exogenous nitrogen input and its impact on plant growth and physiology. J. Ecol. 2024, 43, 878–887.

Wang, Q.; Ou, E.L.; Wang, P.C.; Chen, Y.; Wang, Z.W.; Fang, X.W.; Zhang, J.L. Bacillus amyloliquefaciens GB03 augmented tall fescue growth by regulating phytohormone and nutrient homeostasis under nitrogen deficiency. Front Plant Sci. 2022, 13, e979883.

Li, T.Y.; Yao, L.; Zhong, Y.X.; Wang, Y.; Li, W.F.; Xu, Y.; Li, D.J.; Liu, R.; Li, B.; Zhang, W.F. Nitrogen fertilizer demand in China in the context of green development. Acta Pedol. Sin. 2025, 62, 308–321.

Li, M.Y.; Wu, T.X.; Wang, S.D.; Sang, S.; Zhao, Y.T. Phenology–gross primary productivity (GPP) method for crop information extraction in areas sensitive to non-point source pollution and its influence on pollution intensity. Remote Sens. 2022, 14, 2833.

Chen, Y.; Hu, S.; Guo, Z.; Cui, T.; Jin, Y. Effect of balanced nutrient fertilizer: A case study in pinggu district, Beijing, China. Sci. Total Environ. 2020, 754, 142069.

Kabuba, J.; Lephallo, J.; Rutto, H. Comparison of various technologies used to eliminate nitrogen from wastewater: A review. J. Water Process Eng. 2022, 48, 102885.

Wan, K.L.; Yu, Y.D. Optimizing the irrigation schedule for winter wheat-summer maize using APEX model. Trans. Chin. Soc. Agric. Eng. 2025, 41, 118–126.

Zhang, T.X.; Su, J.Y.; Liu, C.J.; Chen, W.H. State and parameter estimation of the AquaCrop model for winter wheat using sensitivity informed particle filter. Comput. Electron. Agric. 2020, 180, 105909.

Guo, J.P. Discussion on problems in the development and application of crop growth model. Chin. J. Appl. Ecol. 2025, 36, 1579–1589.

Zhu, J.L.; Zeng, W.Z.; Ma, T.; Lei, G.Q.; Zha, Y.Y.; Fang, Y.H.; Wu, J.W.; Huang, J.S. Testing and improving the WOFOST model for sunflower simulation on saline soils of inner mongolia, China. Agronomy 2018, 8, 172.

Strer, M.; Svoboda, N.; Herrmann, A. Abundance of adverse environmental conditions during critical stages of crop production in Northern Germany. Environ. Sci. Eur. 2018, 30, 10.

Palosuo, T.; Hoffmann, M.; Rtter, R.; Lehtonen, H. Sustainable intensification of crop production under alternative future changes in climate and technology: The case of the North Savo region. Agric. Syst. 2021, 190, 103135.

Holzworth, D.P.; Huth, N.I.; Devoil, P.G.; Zurcher, E.J.; Herrmann, N.I. APSIM—Evolution towards a new generation of agricultural systems simulation. Environ. Model. Softw. 2014, 62, 327–350.

Akram, H.; Levia, D.F.; Herrick, J.E.; Lydiasari, H.; Schütze, N. Water requirements for oil palm grown on marginal lands: A simulation approach. Agric. Water Manag. 2022, 260, 107292.

Wu, Y.S.; Wang, E.L.; He, D.; Liu, X.; Archontoulis, S.V.; Huth, N.I.; Zhao, Z.G.; Gong, W.Z.; Yang, W.Y. Combine observational data and modelling to quantify cultivar differences of soybean. Eur. J. Agron. 2019, 111, 125940.

Chaki, A.K.; Gaydon, D.S.; Dalal, R.C.; Bellotti, W.D.; Gathala, M.K.; Hossain, A.; Menzies, N.W. How we used APSIM to simulate conservation agriculture practices in the rice–wheat system of the Eastern Gangetic Plains. Field Crop. Res. 2022, 275, 108344.

Carcedo, A.; Bastos, L.M.; Yadav, S.; Mondal, M.K.; Jagadish, S.V.K.; Kamal, F.A.; Sutradhar, A.; Prasad, P.; Ciampitti, I.A. Assessing impact of salinity and climate scenarios on dry season field crops in the coastal region of Bangladesh. Agric. Syst. 2022, 200, 1034281.

Yang, X.; Zheng, L.; Yang, Q.; Wang, Z.; Cui, S.; Shen, Y. Modelling the effects of conservation tillage on crop water productivity, soil water dynamics and evapotranspiration of a maize–winter wheat–soybean rotation system on the Loess Plateau of China using APSIM. Agric. Syst. 2018, 166, 111–123.

Yin, M.H.; Jiang, Y.B.; Ling, Y.; Ma, Y.L.; Qi, G.P.; Kang, Y.X.; Wang, Y.Y.; Lu, Q.; Shang, Y.J.; Fan, X.R.; et al. Optimizing lucerne productivity and resource efficiency in China’s Yellow River irrigated region: Synergistic effects of ridge-film mulchingand controlled-release nitrogen fertilization. Agriculture 2025, 15, 845.

Liu, J.; Lu, F.G.; Zhu, Y.M.; Wu, H.; Ahmad, I.; Dong, G.C.; Zhou, G.S.; Wu, Y.Q. The effects of planting density and nitrogen application on the growth quality of alfalfa forage in saline soils. Agriculture 2024, 14, 302.

Osterholz, W.R.; Renz, M.J.; Jokela, W.E.; Grabber, J.H. Interseeded alfalfa reduces soil and nutrient runoff losses during and after corn silage production. J. Soil Water Conserv. 2019, 12, 85–90.

Chen, D.D.; Wang, Y.R.; Han, Y.H. Effects of irrigation frequency and fertilizer rate on alfalfa seed yields in the Yellow River irrigated region. Acta Pratacult. Sin. 2016, 25, 154–163.

Gu, Y.J.; Han, C.L.; Kong, M.; Shi, X.Y.; Zdruli, P.; Li, F.M. Plastic film mulch promotes high alfalfa production with phosphorus saving and low risk of soil nitrogen loss. Field Crops Res. 2018, 229, 44–54.

Lu, Q.; Qi, G.P.; Yin, M.H.; Kang, Y.X.; Ma, Y.L.; Jia, Q.; Wang, J.H.; Jiang, Y.B.; Wang, C.; Gao, Y.L. Alfalfa cultivation patterns in the Yellow River irrigation area on soil water and nitrogen use efficiency. Agronomy 2024, 14, 874.

Lv, Y.R.; Wang, J.H.; Yin, M.H.; Kang, Y.X.; Ma, Y.L.; Jia, Q.; Qi, G.P.; Jiang, Y.B.; Lu, Q.; Chen, X.L. Effects of planting and nitrogen application patterns on alfalfa yield, quality, water–nitrogen use efficiency, and economic benefits in the Yellow River irrigation region of Gansu Province, China. Water 2023, 15, 251.

Liu, Q.; Gao, X.H.; Wang, J. Response simulation of CO2 concentration and temperature onspring wheat yield in dryland under different precipitation types. Agric. Res. Arid Areas 2023, 41, 230–237.

Li, G.; Huang, G.B.; Bellotti, W.; Chen, W. Adaptation research of APSIM model under different tillage systems in the Loess hill-gullied region. Acta Ecol. Sin. 2009, 29, 2655–2663.

Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)?—Arguments against avoiding RMSE in the literature. Geosci. Model Dev. 2014, 7, 1247–1250.

Shcherbakov, M.V.; Brebels, A.; Shcherbakova, N.L.; Tyukov, A.P.; Janovsky, T.A.; Kamaev, V.A. A survey of forecast error measures. World Appl. Sci. J. 2013, 24, 171–176.

Tian, R.R.; Wang, J.H.; Yin, M.H.; Ma, Y.L.; Jia, Q.; Kang, Y.X.; Qi, G.P.; Gao, Y.L.; Jiang, Y.B.; Li, H.Y.; et al. Investigation of the regulatory effects of water and nitrogen supply on nitrogen transport and distribution in wolfberry fields. Front. Plant Sci. 2024, 15, 1385980.

Ech–Chatir, L.; Er–Raki, S.; Rodriguez, J.C.; Meddich, A. Advances in crop growth modeling: A review of perennial crop and beneficial soil microorganism approaches. Agric. Water Manag. 2025, 315, 109548.

Cornet, D.; Marcos, J.; Tournebize, R.; Sierra, J. Observed and modeled response of water yam (Dioscorea alata L.) to nitrogen supply: Consequences for nitrogen fertilizer management in the humid tropics. Eur. J. Agron. 2022, 138, 126536.

Man, J. The adaptability of APSIM-wheat model in the middle and lower reaches of the Yangtze River Plain of China: A case study of winter wheat in Hubei Province. Agronomy 2020, 10, 981.

Gulnazar, A.l.I.; Tao, H.M.; Wang, Z.K.; Shen, Y.Y. Evaluating the deep-horizon soil water content and water use efficiency in the alfalfa–wheat rotation system on the dryland of Loess Plateau using APSIM. Acta Pratacult. Sin. 2021, 30, 22–33.

Thompson, L.J.; Archontoulis, S.V.; Puntel, L.A. Simulating within-field spatial and temporal corn yield response to nitrogen with APSIM mode. Precis. Agric. 2024, 25, 2421–2446.

Wu, L.; Chen, C.; Yang, F.Y.; Fan, D.L.; Luo, J.M.; Han, J.R.; Wang, T.S.; Guo, E.J. Optimization of water and nitrogen management mode for spring wheat under different precipitation year types based on APSIM model. J. Triticeae Crops. 2025, 45, 103–111.

Wan, W.L.; Zhao, Y.H.; Li, X.F.; Xu, J.; Liu, K.G.; Chai, Y.Q.; Xu, H.J.; Cui, H.X.; Chen, X.J.; Wu, P.; et al. A moderate reduction in irrigation and nitrogen improves water–nitrogen use efficiency, productivity, and profit under new type of drip irrigated spring wheat system. Front. Plant Sci. 2022, 13, 1005945.

Yin, H.; Wang, Q.; Shi, S.L.; Zhang, N.H.; Wang, T.T.; Liu, Q.L.; Liu, C.W.; Yu, H.L. Effect of irrigation and nitrogen supply levels on hay yield and water use efficiency and soil total nitrogen of Medicage sativa. Grassl. Turf. 2012, 32, 1–7.

Sun, Y.L.; Zhao, J.W.; Liu, X.S.; Li, S.Y.; Ma, C.H.; Wang, X.Z.; Zhang, Q.B. Effect of nitrogen application on photosynthetic daily variation, leaf morphology and dry matter yield of alfalfa at the early flowering growth stage. Acta Pratacult. Sin. 2022, 31, 63–75.

Liu, W.T.; Wang, Y.Q.; Sun, S.N.; Zhao, Y.; Shen, Y.; Qian, J.; Yan, X.B. Effects of nitrogen Forms on nitrogen accumulation and utilization of alfalfa in different stubbles. Pratac. Sci. 2021, 38, 716–725.

Yi, X.F.; Sun, X.C.; Tian, R.; Li, K.X.; Ni, M.; Ying, J.L.; Xu, L.A.; Liu, L.W.; Wang, Y. Genome-Wide Characterization of the Aquaporin Gene Family in Radish and Functional Analysis of RsPIP2-6 Involved in Salt Stress. Front. Plant Sci. 2022, 13, 860742.

Delevatti, L.M.; Cardoso, A.S.; Barbero, R.P.; Leite, R.G.; Reis, R.A. Effect of nitrogen application rate on yield, forage quality, and animal performance in a tropical pasture. Sci. Rep. 2019, 9, 7596.

Zhang, R.; Li, Z.P.; Wang, L. Relationship between soil moisture dynamics, crop growth and precipitation in rain-fed area of the Loess Tableland, China. Chin. J. Appl. Ecol. 2019, 30, 359–369.

Zhao, Y.X.; Xiao, D.P.; Bai, H.Z.; Tang, J.Z. Climatic suitability of winter wheat and summer maize in the North China Plain. Chin. J. Ecol. 2020, 39, 2251–2262.

Wang, P.R.; Zhong, R.; Sun, M.; Kong, W.L.; Zhang, J.J.; Hafeez, N.; Ren, A.X.; Lin, W.; Gao, Z.Q. Nitrogen application rates at rainfall gradients regulate water and nitrogen use efficiency in dryland winter wheat. J. Plant Nutr. Fert. 2022, 28, 1430–1443.

García-López, J.; Lorite, I.J.; García-Ruiz, R.; Ordoñez, R.; Dominguez, J. Yield response of sunflower to irrigation and fertilization under semi-arid conditions. Agric. Water Manag. 2016, 176, 151–162.

Zhao, Y.; Liu, X.; Tong, C.; Wu, Y. Effect of root interaction on nodulation and nitrogen fixation ability of alfalfa in the simulated alfalfa/triticale intercropping in pots. Sci. Rep. 2020, 10, 61234.

Huang, M.X.; Wang, J.; Tang, J.Z.; Fang, Q.X.; Zhang, J.P.; Bai, H.Q.; Wang, N.; Li, Y.; Wu, B.J.; Zheng, J.Q.; et al. Analysis of interaction of sowing date, irrigation and nitrogen application on yield of oilsunflower based on APSIM model. Trans. Chin. Soc. Agric. Eng. 2018, 34, 134.

Cheng, C.; Li, C.; Li, W.M.; Ye, C.Y.; Wang, Y.S.; Zhao, C.S.; Ding, F.H.; Jin, A.F.; Feng, L.P.; Li, Z.F. Optimal path of the simulation model in horticultural crop development and harvest period. Trans. Chin. Soc. Agric. Eng. 2023, 39, 158.

Article Statistics

Copyright License

Download Citations

How to Cite

Dr. Elena R. Petrova, & Prof. Marcus A. Rodriguez. (2025). Optimizing Nitrogen Application for Alfalfa Yield Across Varying Precipitation Regimes Using the APSIM Model. American Journal Of Agriculture And Horticulture Innovations, 5(09), 1–15. Retrieved from https://theusajournals.com/index.php/ajahi/article/view/6775