Enhancing Urea Metabolism and Stress Tolerance in Tomato Through Foliar Nickel Application
Keywords:
Nickel (Ni) nutrition, urease activity, urea metabolismAbstract
Nickel (Ni) is recognized as an essential micronutrient pivotal for urea metabolism and stress mitigation in plants. This study synthesizes research findings to examine the role of foliar Ni application in improving urea conversion efficiency and enhancing abiotic stress resilience in tomato (Solanum lycopersicum). Highlighting biochemical, physiological, and agronomic perspectives, the article elaborates how Ni influences urease activation, antioxidant defense systems, and stress alleviation mechanisms. Results from previous studies demonstrate the critical contribution of Ni in managing nutrient assimilation, fruit quality, and disease resistance, suggesting a promising agricultural strategy to ensure tomato productivity under environmental challenges.
References
Apodaca, L. (2023). Nitrogen statistics and information | U.S. Geological Survey. https://doi.org/10.9767/jcerp.20099
Barcelos, J. P., Reis, H., Godoy, C., Gratão, P., Furlani Junior, E., Putti, F., Campos, M., & Reis, A. (2018). Impact of foliar nickel application on urease activity, antioxidant metabolism and control of powdery mildew (Microsphaera diffusa) in soybean plants. Plant Pathology, 67(7), 1502–1513. https://doi.org/10.1111/ppa.12871
Batth, R., Jain, M., Kumar, A., Nagar, P., Kumari, S., & Mustafiz, A. (2020). Zn²⁺ dependent glyoxalase I plays the major role in methylglyoxal detoxification and salinity stress tolerance in plants. PLoS ONE, 15(5), e0233493. https://doi.org/10.1371/journal.pone.0233493
Bhalerao, S. A., Sharma, A. S., & Poojari, A. C. (2015). Toxicity of nickel in plants. International Journal of Pure and Applied Bioscience, 3(2), 345–355.
Brown, P. H., Welch, R. M., Cary, E. E., & Checkai, R. T. (1987). Micronutrients: Beneficial effects of nickel on plant growth. Journal of Plant Nutrition, 10(9–16), 2125–2135.
Chaudhry, S., & Sidhu, G. P. S. (2022). Climate change regulated abiotic stress mechanisms in plants: A comprehensive review. Plant Cell Reports, 41(1), 1–31.
Dhaliwal, S. S., Sharma, V., & Shukla, A. K. (2022). Impact of micronutrients in mitigation of abiotic stresses in soils and plants—A progressive step toward crop security and nutritional quality. Advances in Agronomy, 173, 1–78. https://doi.org/10.1016/bs.agron.2022.02.001
Fabiano, C. C., Tezotto, T., Favarin, J. L., Polacco, J. C., & Mazzafera, P. (2015). Essentiality of nickel in plants: A role in plant stresses. Frontiers in Plant Science, 6, 754. https://doi.org/10.3389/fpls.2015.00754
Garai, S., Bhowal, B., Pareek, A., Singla-Pareek, S. L., Kaur, C., & Sopory, S. K. (2020). Expression dynamics of glyoxalase genes under high temperature stress in plants. Plant Physiology Reports, 25, 533–548. https://doi.org/10.1007/s40502-020-00545-1
Gerszberg, A., & Hnatuszko-Konka, K. (2017). Tomato tolerance to abiotic stress: A review of most often engineered target sequences. Plant Growth Regulation, 83(2), 175–198. https://doi.org/10.1007/s10725-017-0251-x
Liang, G., Liu, J., Zhang, J., & Guo, J. (2020). Effects of drought stress on photosynthetic and physiological parameters of tomato. Journal of the American Society for Horticultural Science, 145(1), 12–17.
Li, H., Liu, H., Gong, X., Li, S., Pang, J., Chen, Z., & Sun, J. (2021). Optimizing irrigation and nitrogen management strategy to trade off yield, crop water productivity, nitrogen use efficiency and fruit quality of greenhouse grown tomato. Agricultural Water Management, 245, 106570. https://doi.org/10.1016/j.agwat.2020.106570
Macedo, F. G., De Melo, W. J., Delarica, D. D. L., Cruz, R. B., Santos, E. F., De Melo, G. M. P., & Cecílio Filho, A. B. (2022). Nickel increases productivity, Ca accumulation and reduces blossom-end rot in tomato. Archives of Agronomy and Soil Science, 68(11), 1543–1553.
Macedo, F. G., Montanha, G. S., Pereira de Carvalho, H. W., & De Melo, W. J. (2021). Nickel influences urease activity and calcium distribution in tomato fruits. ACS Agricultural Science & Technology, 1(1), 29–34. https://doi.org/10.1021/acsagscitech.0c00003
Myrach, T., Zhu, A., & Witte, C. P. (2017). The assembly of the plant urease activation complex and the essential role of the urease accessory protein G (UreG) in delivery of nickel to urease. Journal of Biological Chemistry, 292(35), 14556.
Pachauri, R., & Meyer, L. (2014). AR5 Synthesis Report: Climate Change 2014—IPCC.
Parvin, K., Hasanuzzaman, M., Bhuyan, M., Nahar, K., Mohsin, S. M., & Fujita, M. (2019). Comparative physiological and biochemical changes in tomato (Solanum lycopersicum L.) under salt stress and recovery: Role of antioxidant defense and glyoxalase systems. Antioxidants, 8(9), 350.
Quinet, M., Angosto, T., Yuste-Lisbona, F. J., et al. (2019). Tomato fruit development and metabolism. Frontiers in Plant Science, 10, 1554. https://doi.org/10.3389/fpls.2019.01554
Robinson, W. A. (2021). Climate change and extreme weather: A review focusing on the continental United States. Journal of the Air & Waste Management Association, 71(10), 1186–1209. https://doi.org/10.1080/10962247.2021.1942319
Sovarel, G., Costache, M., & Croitoru, M. (2016). The influence of some foliar fertilizers on tomato yield and fruit quality. Bulletin UASVM Horticulture, 73(1), 1–3. https://doi.org/10.15835/buasvmcn-hort:11495
Tan, X. W., Ikeda, H., & Oda, M. (2000). Effects of nickel concentration in the nutrient solution on the nitrogen assimilation and growth of tomato seedlings in hydroponic culture supplied with urea or nitrate as the sole nitrogen source. Scientia Horticulturae, 84(3–4), 265–273. https://doi.org/10.1016/S0304-4238(99)00107-7
Tijjani, S. B., Giri, S., & Woznicki, S. A. (2022). Quantifying the potential impacts of climate change on irrigation demand, crop yields, and green water scarcity in the New Jersey Coastal Plain. Science of the Total Environment, 838, 156538. https://doi.org/10.1016/j.scitotenv.2022.156538
Topcu, Y., Nambeesan, S. U., & van der Knaap, E. (2022). Blossom-end rot: A century-old problem in tomato (Solanum lycopersicum L.) and other vegetables. Molecular Horticulture. https://doi.org/10.1186/s43897-021-00022-9
Zhao, R., Liu, J., Xu, N., He, T., Meng, J., & Liu, Z. (2022). Urea hydrolysis in different farmland soils as affected by long-term biochar application. Frontiers in Environmental Science, 10, 950482. https://doi.org/10.3389/fenvs.2022.950482
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Simon Johnson, Rio Martinez

This work is licensed under a Creative Commons Attribution 4.0 International License.