Articles
| Open Access | Neuroprotective Effects Of Eriodictyol On Hippocampal Damage In A Fructose-Streptozotocin-Induced Model Of Type 2 Diabetes
Abstract
Background: Type 2 Diabetes Mellitus (T2DM) is a chronic metabolic disorder increasingly associated with central nervous system complications, including cognitive decline and hippocampal neurodegeneration. Oxidative stress is a primary mechanism underlying this neuronal damage. Flavonoids, such as eriodictyol, are natural compounds known for their potent antioxidant properties. This study aimed to investigate the neuroprotective effects of eriodictyol against biochemical and histopathological abnormalities in the hippocampus of fructose/streptozotocin (F-STZ)-induced diabetic rats.
Methods: T2DM was induced in male Wistar rats using a high-fructose diet (10% w/v) for two weeks followed by a single intraperitoneal injection of streptozotocin (40 mg/kg). Diabetic rats were treated with eriodictyol (50 mg/kg) orally for 45 days. At the end of the treatment, glycemic parameters (blood glucose, HbA1c), hippocampal markers of oxidative stress (lipid peroxidation, protein carbonyls, reduced glutathione), antioxidant enzyme activities (SOD, GR), acetylcholinesterase (AChE), and Na$^+/K^+$-ATPase were assessed. Hippocampal tissues were also processed for histopathological examination using H&E staining.
Results: The F-STZ-induced diabetic rats exhibited significant hyperglycemia, increased hippocampal oxidative stress markers, and depleted antioxidant defenses. This was accompanied by aberrant AChE and Na$^+/K^+$-ATPase activities and severe neuronal damage in the hippocampal CA1 region. Eriodictyol administration significantly (P < 0.05) ameliorated hyperglycemia, reversed the oxidative stress markers, and restored the activity of antioxidant and membrane-bound enzymes towards normal levels. Histopathological analysis confirmed that eriodictyol treatment markedly preserved the structural integrity of hippocampal neurons.
Conclusion: The findings suggest that eriodictyol exerts a potent neuroprotective effect in the diabetic rat hippocampus. This protection is likely mediated by its ability to improve glycemic control and mitigate oxidative stress, thereby preserving neuronal function and structure. Eriodictyol represents a promising natural therapeutic candidate for preventing or treating diabetic neurological complications.
Keywords
Eriodictyol, Type 2 Diabetes, Hippocampus, Neuroprotection
References
Antar, S.A.; Ashour, N.A.; Sharaky, M.; Khattab, M.; Ashour, N.A.; Zaid, R.T.; Al-Karmalawy, A.A. Diabetes mellitus: Classification, mediators, and complications; A gate to identify potential targets for the development of new effective treatments. Biomed. Pharmacother. 2023, 168, 115734.
Kropp, M.; Golubnitschaja, O.; Mazurakova, A.; Koklesova, L.; Sargheini, N.; Vo, T.T.K.S.; Thumann, G. Diabetic retinopathy as the leading cause of blindness and early predictor of cascading complications—risks and mitigation. EPMA J. 2023, 14 (1), 21–42.
Bellary, S.; Kyrou, I.; Brown, J.E.; Bailey, C.J. Type 2 diabetes mellitus in older adults: clinical considerations and management. Nat. Rev. Endocrinol. 2021, 17 (9), 534–548.
Álvarez-Rendón, J.P.; Murillo-Maldonado, J.M.; Riesgo-Escovar, J.R. The insulin signaling pathway a century after its discovery: sexual dimorphism in insulin signaling. Gen. Comp. Endocrinol. 2023, 330, 114146.
Dienel, G.A. Brain glucose metabolism: integration of energetics with function. Physiol. Rev. 2019, 99 (1), 949–1045.
Gupta, M.; Pandey, S.; Rumman, M.; Singh, B.; Mahdi, A.A. Molecular mechanisms underlying hyperglycemia associated cognitive decline. IBRO Neurosci. Rep. 2022, 14, 57–63.
Marinho, L.S.R.; Ikebara, J.M.; Higa, G.S.V.; de Lima Vasconcellos, T.H.; Inês, M.; Móvio, S.H.T.; Kihara, A.H. Function of the nervous system. Handb. Neural Eng. 2024, 17.
Fogwe, L.A.; Reddy, V.; Mesfin, F.B. Neuroanatomy, Hippocampus. StatPearls 2024. Available from: https://www.ncbi.nlm.nih.gov/books/NBK482171/
Abraham, W.C.; Jones, O.D.; Glanzman, D.L. Is plasticity of synapses the mechanism of long-term memory storage? NPJ Sci. Learn. 2019, 4 (1), 9.
Chandra, S.R. Alzheimer's disease: An alternative approach. Indian J. Med. Res. 2017, 145 (6), 723–729.
Chokron, S.; Kovarski, K.; Dutton, G.N. Cortical Visual Impairments and Learning Disabilities. Front. Hum. Neurosci. 2021, 15, 713316.
Khan, M.S.; Khan, S.; Khan, N.; Khan, A.S. Dietary sources, classification, biosynthesis, and mechanism of action of flavonoids in combating oxidative stress. Role Flavonoids Chronic Metab. Dis. 2024, 67–114.
Muscolo, A.; Mariateresa, O.; Giulio, T.; Mariateresa, R. Oxidative stress: the role of antioxidant phytochemicals in the prevention and treatment of diseases. Int. J. Mol. Sci. 2024, 25 (6), 3264.
Devi, S.; Kumar, V.; Singh, S.K.; Dubey, A.K.; Kim, J.J. Flavonoids: Potential candidates for the treatment of neurodegenerative disorders. Biomedicines 2021, 9 (2), 99.
de Lima, E.P.; Moretti Jr, R.C.; Torres Pomini, K.; Laurindo, L.F.; Sloan, K.P.; Sloan, L.A.; Barbalho, S.M. Glycolipid Metabolic Disorders, Metainflammation, Oxidative Stress, and Cardiovascular Diseases: Unraveling Pathways. Biology 2024, 13 (7), 519.
Obafemi, T.O.; Akinmoladun, A.C.; Olaleye, M.T.; Agboade, S.O.; Onasanya, A.A. Antidiabetic potential of methanolic and flavonoid-rich leaf extracts of Synsepalum dulcificum in type 2 diabetic rats. J. Ayurveda Integr. Med. 2017, 8 (4), 238–246.
Tapas, A.R.; Sakarkar, D.M.; Kakde, R.B. Flavonoids as nutraceuticals: a review. Trop. J. Pharm. Res. 2008, 7 (3), 1089–1099.
John, W.G.; Scott, K.W.; Hawcroft, D. Glycated haemoglobin and glycated protein and glucose concentrations in necropsy blood samples. J. Clin. Pathol. 1988, 41 (4), 415–418.
Beutler, E.; Mary, K.Y. Erythrocyte glutathione reductase. Blood 1963, 21 (5), 573–585.
Haque, M.E.; Asanuma, M.; Higashi, Y.; Miyazaki, I.; Tanaka, K.I.; Ogawa, N. Overexpression of Cu–Zn superoxide dismutase protects neuroblastoma cells against dopamine cytotoxicity accompanied by increase in their glutathione level. Neurosci. Res. 2003, 47 (1), 31–37.
Pandey, R.K.; Maranville, J.W.; Chetima, M.M. Tropical wheat response to irrigation and nitrogen in a Sahelian environment. II. Biomass accumulation, nitrogen uptake and water extraction. Eur. J. Agron. 2001, 15 (2), 107–118.
Kakkar, P.; Das, B.; Viswanathan, P.N. A modified spectrophotometric assay of superoxide dismutase. Indian J. Biochem. Biophys. 1984, 21 (2), 130–132.
Varshney, R.; Kale, R.K. Effects of calmodulin antagonists on radiation-induced lipid peroxidation in microsomes. Int. J. Radiat. Biol. 1990, 58 (5), 733–743.
Levine, R.L.; Garland, D.; Oliver, C.N.; Amici, A.; Climent, I.; Lenz, A.G.; Stadtman, E.R. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 1990, 186, 464–478.
Ellman, G.L.; Courtney, K.D.; Andres Jr, V.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7 (2), 88–95.
Svoboda, P.; Mosinger, B. Catecholamines and the brain microsomal Na, K-adenosinetriphosphatase-I. Protection against lipoperoxidative damage. Biochem. Pharmacol. 1981, 30 (5), 427–432.
Day, M.J.; Bilzer, T.; Mansell, J.; Wilcock, B.; Hall, E.J.; Jergens, A.; Washabau, R. Histopathological standards for the diagnosis of gastrointestinal inflammation in endoscopic biopsy samples from the dog and cat: a report from the World Small Animal Veterinary Association Gastrointestinal Standardization Group. J. Comp. Pathol1. 2008, 138, S1–S43.
Horton, W.B.; Barrett, E.J. Microvascular dysfunction in diabetes mellitus and cardiometabolic disease. Endocr. Rev. 2021, 42 (1), 29–55.
Blázquez, E.; Hurtado-Carneiro, V.; LeBaut-Ayuso, Y.; Velázquez, E.; García-García, L.; Gómez-Oliver, F.; Pozo, M.Á. Significance of brain glucose hypometabolism, altered insulin signal transduction, and insulin resistance in several neurological diseases. Front. Endocrinol. 2022, 13, 873301.
Magistretti, P.J.; Allaman, I. Brain energy and metabolism. Neurosci. 21st Century 2022, 2197–2227.
Cacciatore, M.; Grasso, E.A.; Tripodi, R.; Chiarelli, F. Impact of glucose metabolism on the developing brain. Front. Endocrinol. 2022, 13, 1047545.
Speisky, H.; Shahidi, F.; Costa de Camargo, A.; Fuentes, J. Revisiting the oxidation of flavonoids: Loss, conservation or enhancement of their antioxidant properties. Antioxidants 2022, 11 (1), 133.
Shen, N.; Wang, T.; Gan, Q.; Liu, S.; Wang, L.; Jin, B. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem. 2022, 383, 132531.
Papachristoforou, E.; Lambadiari, V.; Maratou, E.; Makrilakis, K. Association of glycemic indices (hyperglycemia, glucose variability, and hypoglycemia) with oxidative stress and diabetic complications. J. Diabetes Res. 2020, 2020 (1), 7489795.
Lana, J.V.; Rios, A.; Takeyama, R.; Santos, N.; Pires, L.; Santos, G.S.; Lana, J.F. Nebulized Glutathione as a Key Antioxidant for the Treatment of Oxidative Stress in Neurodegenerative Conditions. Nutrients 2024, 16 (15), 2476.
Dumanović, J.; Nepovimova, E.; Natić, M.; Kuča, K.; Jaćević, V. The significance of reactive oxygen species and antioxidant defense system in plants: A concise overview. Front. Plant Sci. 2021, 11, 552969.
Colombo, G.; Reggiani, F.; Angelini, C.; Finazzi, S.; Astori, E.; Garavaglia, M.L.; Dalle-Donne, I. Plasma protein carbonyls as biomarkers of oxidative stress in chronic kidney disease, dialysis, and transplantation. Oxid. Med. Cell. Longev. 2020, 2020 (1), 2975256.
Bellavite, P. Neuroprotective potentials of flavonoids: Experimental studies and mechanisms of action. Antioxidants 2023, 12 (2), 280.
Salem, H. R., Hanna, G. S., Hassan, M. H., El-kotb, S., Rashad, S., Yassien, R. I., and Amer, G. S. Combined metformin and insulin therapy improves neurocognitive dysfunction in type 2 diabetic rat model via anti-inflammatory and antioxidant mechanisms. Physiol. Pharmacol. 2024, 28(2), 141-156.
Article Statistics
Copyright License
Copyright (c) 2025 Prof. Rajeev Kapoor

This work is licensed under a Creative Commons Attribution 4.0 International License.