Dysbiosis and Gastrointestinal Dysfunction in Ischemic Stroke: A New Frontier for Treatment
Abstract
Background: Ischemic stroke (IS) is a leading cause of mortality and disability worldwide. Recent evidence suggests that gastrointestinal (GI) dysfunction and dysbiosis, an imbalance in the gut microbiome, may play a significant role in stroke pathophysiology. This article explores the relationship between gastrointestinal dysfunction, dysbiosis, and ischemic stroke, highlighting the potential for therapeutic interventions to improve patient outcomes.
Methods: A comprehensive review of the literature was conducted to explore the mechanisms linking ischemic stroke to GI dysfunction and dysbiosis. Studies published between 2000 and 2024 were examined for evidence of GI involvement, alterations in the gut microbiota, and potential therapeutic strategies targeting these factors.
Results: GI dysfunction, including impaired gut motility, intestinal permeability, and gut microbial imbalances, has been observed in ischemic stroke patients. Dysbiosis may contribute to stroke-related inflammation, immune responses, and long-term complications. Preclinical and clinical studies suggest that restoring gut microbiota balance through probiotics, dietary interventions, and gut-targeted drugs may offer promising therapeutic avenues.
Conclusion: Gastrointestinal dysfunction and dysbiosis represent important areas of research in ischemic stroke pathophysiology. Targeted interventions aimed at the gut microbiome hold promise for improving outcomes in ischemic stroke patients, though further clinical studies are needed to confirm these findings and optimize treatment strategies.
Keywords
Ischemic stroke, gastrointestinal dysfunction, gut microbiomeHow to Cite
References
CDC Stroke Facts|Cdc.Gov. Availabl online: https://www.cdc.gov/stroke/facts.htm (accessed on 16 September 2022).
Katan, M.; Luft, A. Global Burden of Stroke. Semin. Neurol. 2018, 38, 208–211. [Google Scholar] [CrossRef]
WHO EMRO. Stroke, Cerebrovascular Accident|Health Topics. Available online: http://www.emro.who.int/health-topics/stroke-cerebrovascular-accident/index.html (accessed on 30 December 2024).
Gomes, J.; Wachsman, A.M. Types of Strokes. In Handbook of Clinical Nutrition and Stroke; Corrigan, M.L., Escuro, A.A., Kirby, D.F., Eds.; Nutrition and Health; Humana Press: Totowa, NJ, USA, 2013; pp. 15–31. ISBN 978-1-62703-380-0. [Google Scholar]
Nogueira, R.G.; Haussen, D.C.; Liebeskind, D.S.; Jovin, T.G.; Gupta, R.; Saver, J.L.; Jadhav, A.P.; Budzik, R.F.; Baxter, B.; Krajina, A.; et al. Clinical Effectiveness of Endovascular Stroke Treatment in the Early and Extended Time Windows. Int. J. Stroke 2022, 17, 389–399. [Google Scholar] [CrossRef] [PubMed]
Treatment of Acute Stroke: Current Practices and Future Horizons-ClinicalKey. Available online: https://www.clinicalkey.com/#!/content/playContent/1-s2.0-S1553838922008934?returnurl=null&referrer=null (accessed on 2 January 2023).
Wang, J.; Zhang, J.; Ye, Y.; Xu, Q.; Li, Y.; Feng, S.; Xiong, X.; Jian, Z.; Gu, L. Peripheral Organ Injury After Stroke. Front. Immunol. 2022, 13, 901209. [Google Scholar] [CrossRef] [PubMed]
Pongmoragot, J.; Rabinstein, A.A.; Nilanont, Y.; Swartz, R.H.; Zhou, L.; Saposnik, G.; Investigators of the Registry of the Canadian Stroke Network (RCSN) and University of Toronto Stroke Program for the Stroke Outcomes Research Canada (SORCan [www.sorcan.ca]) Working Group. Pulmonary Embolism in Ischemic Stroke: Clinical Presentation, Risk Factors, and Outcome. J. Am. Heart Assoc. 2013, 2, e000372. [Google Scholar] [CrossRef] [PubMed]
Prosser, J.; MacGregor, L.; Lees, K.R.; Diener, H.-C.; Hacke, W.; Davis, S. VISTA Investigators Predictors of Early Cardiac Morbidity and Mortality after Ischemic Stroke. Stroke 2007, 38, 2295–2302. [Google Scholar] [CrossRef]
Bieber, M.; Werner, R.A.; Tanai, E.; Hofmann, U.; Higuchi, T.; Schuh, K.; Heuschmann, P.U.; Frantz, S.; Ritter, O.; Kraft, P.; et al. Stroke-induced Chronic Systolic Dysfunction Driven by Sympathetic Overactivity. Ann. Neurol. 2017, 82, 729–743. [Google Scholar] [CrossRef] [PubMed]
Joundi, R.A.; Rabinstein, A.A.; Nikneshan, D.; Tu, J.V.; Fang, J.; Holloway, R.; Saposnik, G.; Stroke Outcomes Research Working Group (SORCan-www.sorcan.ca). Cardiac Arrest in Acute Ischemic Stroke: Incidence, Predisposing Factors, and Clinical Outcomes. J. Stroke Cerebrovasc Dis. 2016, 25, 1644–1652. [Google Scholar] [CrossRef] [PubMed]
Colivicchi, F.; Bassi, A.; Santini, M.; Caltagirone, C. Cardiac Autonomic Derangement and Arrhythmias in Right-Sided Stroke with Insular Involvement. Stroke 2004, 35, 2094–2098. [Google Scholar] [CrossRef]
Laowattana, S.; Zeger, S.L.; Lima, J.A.C.; Goodman, S.N.; Wittstein, I.S.; Oppenheimer, S.M. Left Insular Stroke Is Associated with Adverse Cardiac Outcome. Neurology 2006, 66, 477–483, discussion 463. [Google Scholar] [CrossRef]
Shrestha, P.; Thapa, S.; Shrestha, S.; Lohani, S.; BK, S.; MacCormac, O.; Thapa, L.; Devkota, U.P. Renal Impairment in Stroke Patients: A Comparison between the Haemorrhagic and Ischemic Variants. F1000Research 2017, 6, 1531. [Google Scholar] [CrossRef]
Tsagalis, G.; Akrivos, T.; Alevizaki, M.; Manios, E.; Stamatellopoulos, K.; Laggouranis, A.; Vemmos, K.N. Renal Dysfunction in Acute Stroke: An Independent Predictor of Long-Term All Combined Vascular Events and Overall Mortality. Nephrol. Dial. Transplant. 2009, 24, 194–200. [Google Scholar] [CrossRef]
Duan, H.; Cheng, Z.; Yun, H.J.; Cai, L.; Tong, Y.; Han, Z.; Geng, X.; Ding, Y. Serum Bilirubin Associated with Stroke Severity and Prognosis: Preliminary Findings on Liver Function after Acute Ischemic Stroke. Neurol. Res. 2023, 45, 62–69. [Google Scholar] [CrossRef]
Muscari, A.; Collini, A.; Fabbri, E.; Giovagnoli, M.; Napoli, C.; Rossi, V.; Vizioli, L.; Bonfiglioli, A.; Magalotti, D.; Puddu, G.M.; et al. Changes of Liver Enzymes and Bilirubin during Ischemic Stroke: Mechanisms and Possible Significance. BMC Neurol. 2014, 14, 122. [Google Scholar] [CrossRef] [PubMed]
Chelluboina, B.; Vemuganti, R. Chronic Kidney Disease in the Pathogenesis of Acute Ischemic Stroke. J. Cereb. Blood Flow Metab. 2019, 39, 1893–1905. [Google Scholar] [CrossRef] [PubMed]
Sarfo, F.S.; Agyei, M.; Ogyefo, I.; Opare-Addo, P.A.; Ovbiagele, B. Factors Linked to Chronic Kidney Disease Among Stroke Survivors in Ghana. J. Stroke Cerebrovasc. Dis. 2021, 30, 105720. [Google Scholar] [CrossRef] [PubMed]
Kanis, J.; Oden, A.; Johnell, O. Acute and Long-Term Increase in Fracture Risk after Hospitalization for Stroke. Stroke 2001, 32, 702–706. [Google Scholar] [CrossRef] [PubMed]
Pang, M.Y.; Eng, J.J. Muscle Strength Is a Determinant of Bone Mineral Content in the Hemiparetic Upper Extremity: Implications for Stroke Rehabilitation. Bone 2005, 37, 103–111. [Google Scholar] [CrossRef]
Meng, H.; Liu, T.; Borjigin, J.; Wang, M.M. Ischemic Stroke Destabilizes Circadian Rhythms. J. Circadian Rhythm 2008, 6, 9. [Google Scholar] [CrossRef]
License
Copyright (c) 2025 Ahmed Ibrahim Hassan, Rana Mohamed Sabry

This work is licensed under a Creative Commons Attribution 4.0 International License.