THE ROLE OF POLYMERS IN ADVANCING PETROCHEMICAL INDUSTRIES DURING CRUDE OIL EXTRACTION PROCESSES
Abstract
Polymers, with their viscoelastic nature and complex molecular structure, significantly enhance oil recovery (EOR). This text elucidates the mechanisms underpinning their application in EOR, categorizing them into synthetic and natural (bio) polymers, each with distinct properties. A variety of EOR techniques employing polymers, like foam, alkali-polymer, surfactant-polymer, alkali-surfactant-polymer, and polymeric nanofluid flooding. Most polymers are pseudoplastic under shear, with biopolymers offering the benefits of salt resistance and thermal stability; however, plugging might result in the wellbore area, and they degrade. Despite its complexities, associative polyacrylamide shows promise, though hydrolyzed polyacrylamide remains the industry standard. Notably, alkali-surfactant-polymer flooding proves effective at various scales, and polymeric nanofluids hold potential for future EOR applications.
Keywords
Polymers, petrochemical industries, crude oil extractionHow to Cite
References
Abidin, A.Z.; Puspasari, T.; Nugroho, W.A. Polymers for enhanced oil recovery technology. Procedia Chem. 2012, 4, 11–16. [Google Scholar] [CrossRef] [Green Version]
Adebayo, A.R. Foam flow in different pore systems—Part 2: The roles of pore attributes on the limiting capillary pressure, trapping coefficient, and relative permeability of foamed gas. SPE J. 2021, 26, 3926–3948. [Google Scholar] [CrossRef]
Adimule, V.; Kerur, S.S.; Chinnam, S.; Yallur, B.C.; Nandi, S.S. Guar gum and its nanocomposites as prospective materials for miscellaneous applications: A short review. Top. Catal. 2022, in press. [Google Scholar] [CrossRef]
Afolabi, R.O.; Oluyemi, G.F.; Officer, S.; Ugwu, J.O. Hydrophobically associating polymers for enhanced oil recovery—Part A: A review on the effects of some key reservoir conditions. J. Pet. Sci. Eng. 2019, 180, 681–698. [Google Scholar] [CrossRef]
Agi, A.; Junin, R.; Abbas, A.; Gbadamosi, A.; Azli, N.B. Influence of ultrasonic on the flow behavior and disperse phase of cellulose nano-particles at fluid–fluid interface. Nat. Resour. Res. 2020, 29, 1427–1446. [Google Scholar] [CrossRef]
Ahmed, S.; Elraies, K.A.; Tan, I.M.; Hashmet, M.R. Experimental investigation of associative polymer performance for CO2 foam enhanced oil recovery. J. Pet. Sci. Eng. 2017, 157, 971–979. [Google Scholar] [CrossRef]
Al-Sharji, H.H.; Grattoni, C.A.; Dawe, R.A.; Zimmerman, R.W. Disproportionate permeability reduction due to polymer adsorption entanglement. In Proceedings of the SPE-68972-MS, SPE European Formation Damage Conference, The Hague, The Netherlands, 21–22 May 2001; pp. 1–11. [Google Scholar]
Azad, M.S.; Trivedi, J.J. Quantification of the viscoelastic effects during polymer flooding: A critical review. SPE J. 2019, 24, 2731–2757. [Google Scholar] [CrossRef]
Azdarpour, A.; Junin, R.B.; Manan, M.; Hamidi, H.; Rafati, R. The effects of controlling parameters on polymer enhanced foam (PEF) stability. J. Teknol. 2015, 73, 53–59. [Google Scholar] [CrossRef] [Green Version]
Babu, K.; Pal, N.; Bera, A.; Saxena, V.K.; Mandal, A. Studies on interfacial tension and contact angle of synthesized surfactant and polymeric from castor oil for enhanced oil recovery. Appl. Surf. Sci. 2015, 353, 1126–1136. [Google Scholar] [CrossRef]
Bagaria, H.G.; Xue, Z.; Neilson, B.M.; Worthen, A.J.; Yoon, K.Y.; Nayak, S.; Cheng, V.; Lee, J.H.; Bielawski, C.W.; Johnston, K.P. Iron oxide nanoparticles grafted with sulfonated copolymers are stable in concentrated brine at elevated temperatures and weakly adsorb on silica. ACS Appl. Mater. Interfaces 2013, 5, 3329–3339. [Google Scholar] [CrossRef]
Bai, J.; Wassmuth, F.R.; Jost, R.W.; Zhao, L. Hydrophobically-modified cellulosic polymers for heavy oil displacement in saline conditions. In Proceedings of the SPE Heavy Oil Conference Canada, Calgary, AB, Canada, 2–14 June 2012; pp. 1–9. [Google Scholar]
Bashir, A.; Sharifi Haddad, A.; Rafati, R. Nanoparticle/polymer-enhanced alpha olefin sulfonate solution for foam generation in the presence of oil phase at high temperature conditions. Colloids Surf. A Physicochem. Eng. Asp. 2019, 582, 123875. [Google Scholar] [CrossRef]
Bera, A.; Shah, S.; Shah, M.; Agarwal, J.; Vij, R.K. Mechanistic study on silica nanoparticles-assisted guar gum polymer flooding for enhanced oil recovery in sandstone reservoirs. Colloids Surf. A Physicochem. Eng. Asp. 2020, 598, 124833. [Google Scholar] [CrossRef]
Cheraghian, G.; Khalili Nezhad, S.S.; Kamari, M.; Hemmati, M.; Masihi, M.; Bazgir, S. Adsorption polymer on reservoir rock and role of the nanoparticles, clay and SiO2. Int. Nano Lett. 2014, 4, 114. [Google Scholar] [CrossRef] [Green Version]
Chul, J.J.; Ke, Z.; Hyun, C.B.; Jin, C.H. Rheology and polymer flooding characteristics of partially hydrolyzed polyacrylamide for enhanced heavy oil recovery. J. Appl. Polym. Sci. 2012, 127, 4833–4839. [Google Scholar] [CrossRef]
Co, L.; Zhang, Z.; Ma, Q.; Watts, G.; Zhao, L.; Shuler, P.J.; Tang, Y. Evaluation of functionalized polymeric surfactants for EOR applications in the Illinois Basin. J. Pet. Sci. Eng. 2015, 134, 167–175. [Google Scholar] [CrossRef] [Green Version]
Corredor, L.M.; Husein, M.M.; Maini, B.B. Effect of hydrophobic and hydrophilic metal oxide nanoparticles on the performance of xanthan gum solutions for heavy oil recovery. Nanomaterials 2019, 9, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
De Vasconcelos, C.K.B.; Medeiros, F.S.; Diniz, B.R.S.; Viana, M.M.; Caliman, V.; Silva, G.G. Nanofluids based on hydrolyzed polyacrylamide and aminated graphene oxide for enhanced oil recovery in different reservoir conditions. Fuel 2022, 310, 122299. [Google Scholar] [CrossRef]
Dehdari, B.; Parsaei, R.; Riazi, M.; Rezaei, N.; Zendehboudi, S. New insight into foam stability enhancement mechanism, using polyvinyl alcohol (PVA) and nanoparticles. J. Mol. Liq. 2020, 307, 112755. [Google Scholar] [CrossRef]
Delamaide, E.; Zaitoun, A.; Renard, G.; Tabary, R. Pelican lake field: First successful application of polymer flooding in a heavy-oil reservoir. SPE Reserv. Eval. Eng. 2014, 17, 340–354. [Google Scholar] [CrossRef]
Druetta, P.; Picchioni, F. Surfactant—Polymer flooding: Influence of the injection scheme. Energy Fuels 2018, 32, 12231–12246. [Google Scholar] [CrossRef]
Fu, C.; Liu, N. Study of the synergistic effect of the nanoparticle-surfactant-polymer system on CO2 foam apparent viscosity and stability at high pressure and temperature. Energy Fuels 2020, 34, 13707–13716. [Google Scholar] [CrossRef]
Gbadamosi, A.O.; Junin, R.; Manan, M.A.; Yekeen, N.; Augustine, A. Hybrid suspension of polymer and nanoparticles for enhanced oil recovery. Polym. Bull. 2019, 76, 6193–6230. [Google Scholar] [CrossRef]
Ge, J.-J.; Zhang, T.-C.; Pan, Y.-P.; Zhang, X. The effect of betaine surfactants on the association behavior of associating polymer. Pet. Sci. 2021, 18, 1441–1449. [Google Scholar] [CrossRef]
Ghosh, P.; Sharma, H.; Mohanty, K.K. ASP flooding in tight carbonate rocks. Fuel 2019, 241, 653–668. [Google Scholar] [CrossRef]
Ghoumrassi-Barr, S.; Aliouche, D. A rheological study of xanthan polymer for enhanced oil recovery. J. Macromol. Sci. Part B 2016, 55, 793–809. [Google Scholar] [CrossRef]
Grisel, M.; Muller, G. Rheological properties of schizophyllan in presence of borate ions. In Gels; Zrínyi, M., Ed.; Progress in Colloid & Polymer Science; Steinkopff: Darmstadt, Germany, 1996; Volume 102, pp. 32–37. ISBN 978-3-7985-1663-2. [Google Scholar]
Gunaji, R.G.; Junin, R.; Bandyopadhyay, S.; Guttula, P. Production of biopolymer Schizophyllan using local sources in Malaysia. In Offshore Technology Conference Asia; OnePetro: Richardson, TX, USA, 2020; pp. 1–10. [Google Scholar]
Guo, K.; Li, H.; Yu, Z. In-situ heavy and extra-heavy oil recovery: A review. Fuel 2016, 185, 886–902. [Google Scholar] [CrossRef]
Hernando, L.; Bertin, H.J.; Omari, A.; Dupuis, G.; Zaitoun, A. Polymer-enhanced foams for water profile control. In SPE Improved Oil Recovery Conference; OnePetro: Richardson, TX, USA, 2016. [Google Scholar] [CrossRef]
Hu, Z.; Haruna, M.; Gao, H.; Nourafkan, E.; Wen, D. Rheological Properties of Partially Hydrolyzed Polyacrylamide Seeded by Nanoparticles. Ind. Eng. Chem. Res. 2017, 56, 3456–3463. [Google Scholar] [CrossRef]
Iqbal, M.; Lyon, B.A.; Ureña-Benavides, E.E.; Moaseri, E.; Fei, Y.; McFadden, C.; Javier, K.J.; Ellison, C.J.; Pennell, K.D.; Johnston, K.P. High temperature stability and low adsorption of sub-100 nm magnetite nanoparticles grafted with sulfonated copolymers on Berea sandstone in high salinity brine. Colloids Surf. A Physicochem. Eng. Asp. 2017, 520, 257–267. [Google Scholar] [CrossRef] [Green Version]
Ji, S.; Li, H.; Wang, G.; Lu, T.; Ma, W.; Wang, J.; Zhu, H.; Xu, H. Rheological behaviors of a novel exopolysaccharide produced by Sphingomonas WG and the potential application in enhanced oil recovery. Int. J. Biol. Macromol. 2020, 162, 1816–1824. [Google Scholar] [CrossRef]
Johns, R.T.; Dindoruk, B. Chapter 1—Gas flooding. In Enhanced Oil Recovery Field Case Studies; Sheng, J.J., Ed.; Gulf Professional Publishing: Boston, MA, USA, 2013; pp. 1–22. ISBN 978-0-12-386545-8. [Google Scholar]
Kalam, S.; Kamal, M.S.; Patil, S.; Hussain, S.M.S. Impact of spacer nature and counter ions on rheological behavior of novel polymer-cationic gemini surfactant systems at high temperature. Polymers 2020, 12, 1027. [Google Scholar] [CrossRef]
Kamal, M.S.; Sultan, A.S.; Al-Mubaiyedh, U.A.; Hussein, I.A. Review on polymer flooding: Rheology, adsorption, stability, and field applications of various polymer systems. Polym. Rev. 2015, 55, 491–530. [Google Scholar] [CrossRef]
Kazempour, M.; Sundstrom, E.; Alvarado, V. Effect of alkalinity on oil recovery during polymer floods in sandstone. SPE Reserv. Eval. Eng. 2012, 15, 195–209. [Google Scholar] [CrossRef]
Kesarwani, H.; Saxena, A.; Saxena, N.; Sharma, S. Oil mobilization potential of a novel anionic Karanj oil surfactant: Interfacial, wetting characteristic, adsorption, and oil recovery studies. Energy Fuels 2021, 35, 10597–10610. [Google Scholar] [CrossRef]
Kumar, S.; Saxena, N.; Mandal, A. Synthesis and evaluation of physicochemical properties of anionic polymeric surfactant derived from Jatropha oil for application in enhanced oil recovery. J. Ind. Eng. Chem. 2016, 43, 106–116. [Google Scholar] [CrossRef]
Li, M.-C.; Wu, Q.; Song, K.; Lee, S.; Qing, Y.; Wu, Y. Cellulose nanoparticles: Structure–morphology–rheology relationships. ACS Sustain. Chem. Eng. 2015, 3, 821–832. [Google Scholar] [CrossRef]
Li, Y.; Chen, X.; Liu, Z.; Liu, R.; Liu, W.; Zhang, H. Effects of molecular structure of polymeric surfactant on its physico-chemical properties, percolation and enhanced oil recovery. J. Ind. Eng. Chem. 2021, 101, 165–177. [Google Scholar] [CrossRef]
Liu, P.; Mu, Z.; Wang, C.; Wang, Y. Experimental study of rheological properties and oil displacement efficiency in oilfields for a synthetic hydrophobically modified polymer. Sci. Rep. 2017, 7, 8791. [Google Scholar] [CrossRef]
Liu, S.; Zhang, D.; Yan, W.; Puerto, M.; Hirasaki, G.J.; Miller, C.A. Favorable attributes of alkaline-surfactant-polymer flooding. SPE J. 2008, 13, 5–16. [Google Scholar] [CrossRef]
Maia, A.M.S.; Costa, M.; Borsali, R.; Garcia, R.B. Rheological behavior and scattering studies of acrylamide-based copolymer solutions. Macromol. Symp. 2005, 229, 217–227. [Google Scholar] [CrossRef]
Majeed, T.; Kamal, M.S.; Zhou, X.; Solling, T. A review on foam stabilizers for enhanced oil recovery. Energy Fuels 2021, 35, 5594–5612. [Google Scholar] [CrossRef]
Maurya, N.K.; Mandal, A. Studies on behavior of suspension of silica nanoparticle in aqueous polyacrylamide solution for application in enhanced oil recovery. Pet. Sci. Technol. 2016, 34, 429–436. [Google Scholar] [CrossRef]
Medica, K.; Maharaj, R.; Alexander, D.; Soroush, M. Evaluation of an alkali-polymer flooding technique for enhanced oil recovery in Trinidad and Tobago. J. Pet. Explor. Prod. Technol. 2020, 10, 3947–3959. [Google Scholar] [CrossRef]
Mehrabianfar, P.; Bahraminejad, H.; Manshad, A.K. An introductory investigation of a polymeric surfactant from a new natural source in chemical enhanced oil recovery (CEOR). J. Pet. Sci. Eng. 2021, 198, 108172. [Google Scholar] [CrossRef]
Mishra, S.; Bera, A.; Mandal, A.; Mishra, S.; Bera, A.; Mandal, A. Effect of polymer adsorption on permeability reduction in enhanced oil recovery. J. Pet. Eng. 2014, 2014, 1–9. [Google Scholar] [CrossRef] [Green Version]
Mohsenatabar Firozjaii, A.; Saghafi, H.R. Review on chemical enhanced oil recovery using polymer flooding: Fundamentals, experimental and numerical simulation. Petroleum 2020, 6, 115–122. [Google Scholar] [CrossRef]
Nowrouzi, I.; Khaksar Manshad, A.; Mohammadi, A.H. Effects of Tragacanth Gum as a natural polymeric surfactant and soluble ions on chemical smart water injection into oil reservoirs. J. Mol. Struct. 2020, 1200, 127078. [Google Scholar] [CrossRef]
Olajire, A.A. Review of ASP EOR (alkaline surfactant polymer enhanced oil recovery) technology in the petroleum industry: Prospects and challenges. Energy 2014, 77, 963–982. [Google Scholar] [CrossRef]
Pal, N.; Kumar, N.; Mandal, A. Stabilization of dispersed oil droplets in nanoemulsions by synergistic effects of the gemini surfactant, PHPA polymer, and silica nanoparticle. Langmuir 2019, 35, 2655–2667. [Google Scholar] [CrossRef]
Panthi, K.; Sharma, H.; Mohanty, K.K. ASP flood of a viscous oil in a carbonate rock. Fuel 2016, 164, 18–27. [Google Scholar] [CrossRef]
Pu, W.; Shen, C.; Wei, B.; Yang, Y.; Li, Y. A comprehensive review of polysaccharide biopolymers for enhanced oil recovery (EOR) from flask to field. J. Ind. Eng. Chem. 2018, 61, 1–11. [Google Scholar] [CrossRef]
Quan, H.; Li, Z.; Huang, Z. Self-assembly properties of a temperature- and salt-tolerant amphoteric hydrophobically associating polyacrylamide. RSC Adv. 2016, 6, 49281–49288. [Google Scholar] [CrossRef]
Rafati, R.; Oludara, O.K.; Haddad, A.S.; Hamidi, H. Experimental investigation of emulsified oil dispersion on bulk foam stability. Colloids Surf. A Physicochem. Eng. Asp. 2018, 554, 110–121. [Google Scholar] [CrossRef] [Green Version]
Raffa, P.; Broekhuis, A.A.; Picchioni, F. Polymeric surfactants for enhanced oil recovery: A review. J. Pet. Sci. Eng. 2016, 145, 723–733. [Google Scholar] [CrossRef] [Green Version]
Rezaei, A.; Abdi-Khangah, M.; Mohebbi, A.; Tatar, A.; Mohammadi, A.H. Using surface modified clay nanoparticles to improve rheological behavior of Hydrolized Polyacrylamid (HPAM) solution for enhanced oil recovery with polymer flooding. J. Mol. Liq. 2016, 222, 1148–1156. [Google Scholar] [CrossRef]
Rock, A.; Hincapie, R.E.; Tahir, M.; Langanke, N.; Ganzer, L. On the role of polymer viscoelasticity in enhanced oil recovery: Extensive laboratory data and review. Polymers 2020, 12, 2276. [Google Scholar] [CrossRef]
Saboorian-Jooybari, H.; Dejam, M.; Chen, Z. Heavy oil polymer flooding from laboratory core floods to pilot tests and field applications: Half-century studies. J. Pet. Sci. Eng. 2016, 142, 85–100. [Google Scholar] [CrossRef]
Saha, R.; Uppaluri, R.V.S.; Tiwari, P. Silica nanoparticle assisted polymer flooding of heavy crude oil: Emulsification, rheology, and wettability alteration characteristics. Ind. Eng. Chem. Res. 2018, 57, 6364–6376. [Google Scholar] [CrossRef]
Said, M.S.; Jaafar, M.Z.; Omar, S.; Sharbini, S.N. Influence of whey protein isolate on CO2 foams stability in three different types of crude oil. Case Stud. Chem. Environ. Eng. 2022, 5, 100191. [Google Scholar] [CrossRef]
Sarsenbekuly, B.; Kang, W.; Fan, H.; Yang, H.; Dai, C.; Zhao, B.; Aidarova, S.B. Study of salt tolerance and temperature resistance of a hydrophobically modified polyacrylamide based novel functional polymer for EOR. Colloids Surf. A Physicochem. Eng. Asp. 2017, 514, 91–97. [Google Scholar] [CrossRef]
Sharma, T.; Iglauer, S.; Sangwai, J.S. Silica nanofluids in an oilfield polymer polyacrylamide: Interfacial properties, wettability alteration, and applications for chemical enhanced oil recovery. Ind. Eng. Chem. Res. 2016, 55, 12387–12397. [Google Scholar] [CrossRef]
Sheng, J.J. Chapter 6—Polymer viscoelastic behavior and its effect on field facilities and operations. In Modern Chemical Enhanced Oil Recovery; Gulf Professional Publishing: Houston, TX, USA, 2011; pp. 207–238. ISBN 9781856177450. [Google Scholar]
Shi, L.-T.; Li, C.; Zhu, S.-S.; Xu, J.; Sun, B.-Z.; Ye, Z.-B. Study on properties of branched hydrophobically modified polyacrylamide for polymer flooding. J. Chem. 2013, 2013, 675826. [Google Scholar] [CrossRef] [Green Version]
Standnes, D.C.; Skjevrak, I. Literature review of implemented polymer field projects. J. Pet. Sci. Eng. 2014, 122, 761–775. [Google Scholar] [CrossRef]
Sui, X.; Chen, Z.; Kurnia, I.; Han, X.; Yu, J.; Zhang, G. Alkaline-surfactant-polymer flooding of active oil under reservoir conditions. Fuel 2020, 262, 116647. [Google Scholar] [CrossRef]
Veerabhadrappa, S.K.; Doda, A.; Trivedi, J.J.; Kuru, E. On the effect of polymer elasticity on secondary and tertiary oil recovery. Ind. Eng. Chem. Res. 2013, 52, 18421–18428. [Google Scholar] [CrossRef]
Wang, D.; Han, D.; Xu, G.; Yang, L. Influence of partially hydrolyzed polyacrylamide on the foam capability of α-Olefin Sulfonate surfactant. Pet. Explor. Dev. 2008, 35, 335–338. [Google Scholar] [CrossRef]
Wei, B.; Romero-Zerón, L.; Rodrigue, D. Oil displacement mechanisms of viscoelastic polymers in enhanced oil recovery (EOR): A review. J. Pet. Explor. Prod. Technol. 2014, 4, 113–121. [Google Scholar] [CrossRef] [Green Version]
Wever, D.A.Z.; Picchioni, F.; Broekhuis, A.A. Polymers for enhanced oil recovery: A paradigm for structure–property relationship in aqueous solution. Prog. Polym. Sci. 2011, 36, 1558–1628. [Google Scholar] [CrossRef]
Xu, L.; Dong, M.; Gong, H.; Sun, M.; Li, Y. Effects of inorganic cations on the rheology of aqueous welan, xanthan, gellan solutions and their mixtures. Carbohydr. Polym. 2015, 121, 147–154. [Google Scholar] [CrossRef] [PubMed]
Xue, Z.; Foster, E.; Wang, Y.; Nayak, S.; Cheng, V.; Ngo, V.W.; Pennell, K.D.; Bielawski, C.W.; Johnston, K.P. Effect of grafted copolymer composition on iron oxide nanoparticle stability and transport in porous media at high salinity. Energy Fuels 2014, 28, 3655–3665. [Google Scholar] [CrossRef]
Yang, B.; Mao, J.; Zhao, J.; Shao, Y.; Zhang, Y.; Zhang, Z.; Lu, Q. Improving the Thermal stability of hydrophobic associative polymer aqueous solution using a “triple-protection” strategy. Polymers 2019, 11, 949. [Google Scholar] [CrossRef] [Green Version]
Yusuf, S.M.; Junin, R.; Muhamad Sidek, M.A.; Agi, A.; Ahmad Fuad, M.F.I.; Rosli, N.R.; Rahman, N.A.; Yahya, E.; Muhamad Soffian Wong, N.A.; Mustaza, M.H. Screening the synergy of sodium dodecylbenzenesulfonate and carboxymethyl cellulose for surfactant-polymer flooding. Pet. Res. 2021, in press. [Google Scholar] [CrossRef]
Zhang, C.; Xue, Y.; Huang, D.; Wei, B. Design and Fabrication of anionic/cationic surfactant foams stabilized by lignin–cellulose nanofibrils for enhanced oil recovery. Energy Fuels 2020, 34, 16493–16501. [Google Scholar] [CrossRef]
Zhao, T.; Xing, J.; Dong, Z.; Tang, Y.; Pu, W. Synthesis of polyacrylamide with superb salt-thickening performance. Ind. Eng. Chem. Res. 2015, 54, 10568–10574. [Google Scholar] [CrossRef]
Zhapbasbayev, U.K.; Kudaibergenov, S.E.; Mankhanova, A.E.; Sadykov, R.M. Experimental study of alkaline-surfactant-polymer compositions for ASP-flooding of cores from highly viscous oil reservoirs. Thermophys. Aeromech. 2018, 25, 909–916. [Google Scholar] [CrossRef]
Zhong, L.; Oostrom, M.; Truex, M.J.; Vermeul, V.R.; Szecsody, J.E. Rheological behavior of xanthan gum solution related to shear thinning fluid delivery for subsurface remediation. J. Hazard. Mater. 2013, 244–245, 160–170. [Google Scholar] [CrossRef] [PubMed]
Zhu, J.; Xie, S.; Yang, Z.; Li, X.; Chen, J.; Zhang, X.; Zheng, N. A review of recent advances and prospects on nanocellulose properties and its applications in oil and gas production. J. Nat. Gas Sci. Eng. 2021, 96, 104253. [Google Scholar] [CrossRef]
License
Copyright (c) 2024 Aymen Hasan Abdulrazzaq

This work is licensed under a Creative Commons Attribution 4.0 International License.