THE ROLE OF GENETIC MUTATIONS IN THE DEVELOPMENT OF ACNE

Authors

  • Khamidova Farida Muinovna Samarkand State Medical University, Department of Pathological Anatomy with a sectional course, Uzbekistan
  • Khusinova Firuza Azgar Kizi Samarkand State Medical University, Department of Pathological Anatomy with a sectional course, Uzbekistan

DOI:

https://doi.org/10.37547/ajbspi/Volume04Issue07-05

Keywords:

Acne, molecular genetic mechanisms, prognosis

Abstract

Relevance: Understanding of the molecular and genetic mechanisms underlying acne and acne scar formation is still in its infancy. However, ongoing research in this area increases our knowledge of disease mechanisms and may contribute to the development of new preventive and treatment strategies. Research confirms the significant role of genetic factors in the development of acne, affecting its occurrence, course and effectiveness of treatment. Particular attention is paid to gene polymorphisms associated with inflammation, androgen metabolism and the immune response, such as CYP17A1 and TNF-α. These data highlight the importance of taking patients' genetic profile into account when diagnosing and choosing therapy, which can improve treatment outcomes and prevent disease relapse. Based on an analysis of literature data, in Uzbekistan there is insufficient understanding of the prognostic significance and role of the NLR and TLR2 genes in the development of acne. This highlights the complexity of the genetic component of acne and indicates the need for additional research to better understand the influence of these and other genetic factors on the pathogenesis of the disease.

Conclusion. An in-depth study of the genetic aspects of acne will not only enrich the scientific understanding of the disease, but will also open up new opportunities for its more effective treatment and prevention.

References

S. A. Davis, L. F. Sandoval, C. J. Gustafson, S. R. Feldman, K. M. Cordoro Treatment of acne in adolescents in the United States: analysis of nationally representative data.Pediatrician Dermatol, 30 (6) (2013), p. 689-694 View at publisher, R.

Ashton, M. Weinstein Acne vulgaris in children Pediatr Rev, 40 (11) (2019), pp. 577 – 589,

K. Schnopp, M. Mempe. Acne vulgaris in children and adolescents Minerva Pediatrician, 63 (2011), p. 293-304,

A.U. Tan, B.J. Schlosser, A.S. Paller Review of diagnosis and treatment of acne in adult female patients Int J Women Dermatol, 4 (2) (2018), pp. 56-71.

A. L. Chien, J. Qi, B. Rainer, D. L. Sachs, Y. R. Helfrich Acne treatment during pregnancy.J Am Board Fam Med, 29 (2) (2016), p. 254-262.

H. Berendes, R.A. Bridges, R.A. Good Fatal granulomatosis of childhood: clinical study of a new syndrome Minn Med, 40 (5) (1957), p. 309-312 View in Scopus Google Scholar,

C. Guo, X. Chen, J. Wang, etc. Clinical manifestations and genetic analysis of 4 children with chronic granulomatous disease Medicine, 99 (23) (2020), pp. View at publisher View in Scopus Google Scholar 162.523,

R. Lacerda-Pontes, L. N. Gomes, R. S. Albuquerque, P. V. Soeiro-Pereira, A. Condino-Neto Expanded understanding of chronic granulomatous disease Curr Opin Pediatr, 31 (6) (2019), p. 869-873,10.1097/View at publisher

J. Au, F. T. Gibson, I. K. Aronson Triad of follicular occlusion: isotope response or side effect of rituximab? Dermatol Online J, 26 (2) (2020) 13030/qt0wr0k6fx. Published February 15, 2020 Google Scholar 217.295,

ZN Chicarilli Triad of follicular occlusion: hidradenitis suppurativa, acne conglobata and dissecting cellulitis of the scalp Ann Plast Surg, 18(3) (1987), p. 230-237,10.1097/00000637-198703000-00009 Finding PDF... View in Scopus Google Scholar 218.296,

V. Vasanth, B.S. Chandrashekar Tetrad of follicular occlusion Indian Dermatol Online J, 5 (4) (2014), pp. 491-493,10.4103/2229-5178.142517

Vasam M., Korutla S., Bohara R. A. Acne vulgaris: A review of the pathophysiology, treatment, and recent nanotechnology based advances //Biochemistry and Biophysics Reports. – 2023. – Т. 36. – С. 101578

Lichtenberger R. et al. Genetic architecture of acne vulgaris //Journal of the European Academy of Dermatology and Venereology. – 2017. – Т. 31. – №. 12. – С. 1978-1990,

Evans D. M. et al. Teenage acne is influenced by genetic factors //British Journal of Dermatology. – 2005. – Т. 152. – №. 3. – С. 579-581., Heran, Maria I. and Iwao Ando. "Acne in infancy and the genetics of acne." Dermatology 206.1 (2003): 24-28

Ballanger, F. et al. “Heredity: a predictor of acne.” Dermatology 212.2 (2006): 145-149.

Saeidi S. et al. PPARγ Pro12Ala and C161T polymorphisms in patients with acne vulgaris: Contribution to lipid and lipoprotein profile //Advances in medical sciences. – 2018. – Т. 63. – №. 1. – С. 147-151.

Heng A.H.S., Say YH., Sio Y.Y. et al. Gene variants associated with acne vulgaris presentation and severity: a systematic review and meta-analysis // BMC Med. Genomics. – 2021. – Vol. 103,

Philips N., Auler S., Hugo R. et al. Beneficial regulation of matrix metalloproteinases for skin health // Enzyme Res. – 2011. – Vol. 2011. – P. 427285,

Ramezani M., Zavattaro E.., Sadeghi M. Association of the CYP17 (T-34C) Polymorphism and the Risk of Acne Vulgaris: A Meta-Analysis // Dermatol Rev/Przegl Dermatol 2019, 106, 591–602.,

Baumann M. Acne. In: Bauman L, Weisberg E, editors. Cosmetic dermatology principles and practice. – N. Y.: The McGraw-Hill Companies, 2002. – P. 55-61.,

Collier Ch., Yarper J., Cantrell W. The prevalence of acne in adults 20 years and older // J. Amer. Acad. Dermatol. – 2008. –Vol. 58. – Р. 56-59.,

Heng A.H.S., Chew F.T. Systematic review of the epidemiology of acne vulgaris // Sci. Rep. – 2020. – Vol. 10. – P. 5754

Layton A., Alexis A., Baldwin H. et al. Identifying gaps and providing recommendations to address shortcomings in the investigation of acne sequelae by the Personalising Acne: Consensus of Experts panel // JAAD Int. – 2021. – Vol. 17, №5. – P. 41-48., 30.

Rocha M.A.D., Guadanhim L.R.S., Sanudo A., Bagatin E. Modulation of Toll Like Receptor-2 on sebaceous gland by the treatment of adult female acne // Dermatoendocrinology. – 2017. – Vol. 9, №1. – P. e1361570

Li L., Wu Y., Li L. et al. The tumour necrosis factor-α 308G>A genetic polymorphism may contribute to the pathogenesis of acne: a meta-analysis // Clin. Exp. Dermatol. – 2015. – Vol. 40, №6. – P. 682-687.,

Lichtenberger R., Simpson M.A., Smith C. et al. Genetic architecture of acne vulgaris // J. Europ. Acad. Dermatol. Venerol. – 2017. – Vol. 31, №12. – P. 1978-1990

Zhang B., Choi Y.M., Lee J. et al. Toll-like receptor 2 plays a critical role in pathogenesis of acne vulgaris. biomed derma, Oncel M. Matrix Metalloproteinases and Cancer // Europ. J. Basic. Med. Sci. – 2012. – Vol. 2. – P. 91-100.

Wang B., He Y.L. Association of the TNF-α gene promoter polymorphisms at nucleotide -238 and -308 with acne susceptibility: a meta-analysis // Clin. Exp. Dermatol. – 2019. – Vol. 44, №2ю – Р. 176-183.,

He L., Yang Z., Yu H. et al. The relationship between CYP17–34T/C polymorphism and acne in Chinese subjects revealed by sequencing // Dermatology. – 2006. – Vol. 212, №4. – P. 338-342.,

Heng A.H.S., Chew F.T. Systematic review of the epidemiology of acne vulgaris // Sci. Rep. – 2020. – Vol. 10. – P. 5754.,

Malikova N.N., Kharimov Kh.Y., Arifov S.S., Boboev R.T. The CYP17A1 гs743572 gene polymorphism and risk of developmend and clinical fearture of acne vulgaris in Uzbek population // Int. J. Biomed. – 2019. – Vol. 9, №2. – P. 125-127.,

Ramezani M., Zavattaro E.., Sadeghi M. Association of the CYP17 (T-34C) Polymorphism and the Risk of Acne Vulgaris: A Meta-Analysis // Dermatol Rev/Przegl Dermatol 2019, 106, 591–602

Malikova N.N., Kharimov Kh.Y., Arifov S.S., Boboev R.T. The CYP17A1 гs743572 gene polymorphism and risk of developmend and clinical fearture of acne vulgaris in Uzbek population // Int. J. Biomed. – 2019. – Vol. 9, №2. – P. 125-127.,

Ramezani M., Zavattaro E.., Sadeghi M. Association of the CYP17 (T-34C) Polymorphism and the Risk of Acne Vulgaris: A Meta-Analysis // Dermatol Rev/Przegl Dermatol 2019, 106, 591–602

He L., Yang Z., Yu H. et al. The relationship between CYP17–34T/C polymorphism and acne in Chinese subjects revealed by sequencing // Dermatology. – 2006. – Vol. 212, №4. – P. 338-342.,

Yang J.K., Wu W.J., He L., Zhang Y.P. Genotype-phenotype correlations in severe acne in Chinese population // Dermatology. – 2014. – Vol. 229, №3. – P. 210-214

Aisha N.M., Haroon J., Hussain S. et al. Association between tumour necrosis-a gene polymorphisms and acne vulgaris in a pakistani population // Clin. Exp. Dermatol. – 2016. – Vol. 41, №3. – Р. 297-301.

Арифов С.С., Маликова Н.Н., Каримов Х.Я.,. Бобоев К.Т. Исследование полиморфизма rs4 646 421 гена CYP1A1 в патогенезе и клиническом течении акне // 36-я науч¬но-практическая конференция c международным участи¬ем. – М., 2019. – 11 с, Philips N., Auler S., Hugo R. et al. Beneficial regulation of matrix metalloproteinases for skin health // Enzyme Res. – 2011. – Vol. 2011. – P. 427285

Li L., Wu Y., Li L. et al. The tumour necrosis factor-α 308G>A genetic polymorphism may contribute to the pathogenesis of acne: a meta-analysis // Clin. Exp. Dermatol. – 2015. – Vol. 40, №6. – P. 682-687.,

Арифов С.С., Маликова Н.Н., Каримов Х.Я.,. Бобоев К.Т. Исследование полиморфизма rs4 646 421 гена CYP1A1 в патогенезе и клиническом течении акне // 36-я науч¬но-практическая конференция c международным участи¬ем. – М., 2019. – 11 с,

Bradley J.R. TNF-mediated inflammatory disease. // J. Pathol. – 2008. – Vol. 214, №2. – P. 149-160., Taylor M., Gonzalez M., Porter R. Pathways to Inflammation: Acne Pathophysiology // Europ. J. Dermatol. – 2011. – Vol. 21, №3. – P. 323-333.,

Wang B., He Y.L. Association of the TNF-α gene promoter polymorphisms at nucleotide -238 and -308 with acne susceptibility: a meta-analysis // Clin. Exp. Dermatol. – 2019. – Vol. 44, №2ю – Р. 176-183

Арифов С.С., Маликова Н.Н., Каримов Х.Я.,. Бобоев К.Т. Исследование полиморфизма rs4 646 421 гена CYP1A1 в патогенезе и клиническом течении акне // 36-я науч¬но-практическая конференция c международным участи¬ем. – М., 2019. – 11 с.

Pang Y., He C.D., Liu Y. et al. Combination of short CAG and GGN repeats in the androgen receptor gene is associated with acne risk in North East China // J. Europ. Acad. Dermatol. Venereol. – 2008. – Vol. 22, №12. – P. 1445-51.,

Tasli L., Turgut S., Kacar N et al. Insulin-like growth factor-1 gene polymorphism in acne vulgaris // Europ. Acad. Dermatol. Venerol. – 2013. – Vol. 27, №2. – P. 254-257

Akoglu G., Tan C., Ayvaz D.C., Tezcan I. Tumor necrosis factor α-308 G/A and interleukin 1 β-511 C/T gene polymorphisms in patients with scarring acne // J. Cosmet. Dermatol. – 2019. – Vol. 18, №1. – Р. 395-400.,

Anwar A.I., Agusni I., Mass M.N. et al. The immunogenetic analysis of acne vulgaris // Sci. J. Clin. Med. – 2013. – Vol. 2, №2. – P. 58-63.

Hussain S., Iqbal T., Sadiq I. et al. Polymorphism in the IL-8 Gene Promoter and the Risk of Acne Vulgaris in a Pakistani Population // Iran J. Allergy Asthma Immunol. – 2015. – Vol. 14, №4. – P. 443-449.,

Jacob C.I., Dover J.S., Kaminer M.S. Acne scarring: a classification system and review of treatment options // J. Amer. Acad. Dermatol. – 2001. – Vol. 45. – P. 109-117.

Роль белков, участвующих в синтезе стероидных гормонов, в развитии акне. Кириченко А.К., Бардецкая Я.В., Фефелова Ю.А., Котова К.В., Токмакова В.О.2, Рукша Т.Г. Вестник дерматологии и венерологии. 2022;98(6):65–72

Tan S., Khumalo N., Bayat A. Understanding keloid pathobiology from a quasi-neoplastic perspective:less of a scar and more of a chronic infl ammatory disease with cancer-like tendencies // Front. Immunol. 2019. Vol. 10. P. 1810. doi: 10.3389/fi mm u.2019.01810.

Zhu Z., Ding J., Tredget E.E. The molecular basis of hypertrophic scars // Burns & Trauma. 2016. Vol. 4. P. 2. doi: 10.1186/s41038-015-0026-4.

Tuan T.L., Nichter L.S. The molecular basis of keloid and hypertrophic scar formation // Mol. Med. Today. 19 98. Vol. 4. P. 19–24. doi: 10.1016/S1357-4310(97)80541-2.

Krumdieck R., Hook M., Rosenberg L.C., Volanakis J.E. The proteoglycan decorin binds C1q and inhibits the activity of the C1 complex // J. Immun ol. 1992. Vol. 149. P. 3695–3701. 15.

Wang P., Liu X., Xu P. et al. Decorin reduces hypertrophic scarring through inhibition of the TGF-β1/Smad signalin g pathway in a rat osteomyelitis model // Exp. Ther. Med. 2016. Vol. 12 (4). P. 2102–2108. doi: 10.3892/ etm.2016.3591.

Yokota K., Kobayakawa K., Saito T. et al. Periostin pro motes scar formation through the interaction between pericytes and infi ltrating monocytes / macrophages after spinal cord injury // Am. J. Pathol. 2017 Mar. Vol. 187 (3). P. 639–653. doi: 10.1016/j.ajpath. 2016.11.010.

Crawford J., Nygard K., Gan B.S., O’Gorman D.B. Periostin induces fi broblast proliferation and myofi broblast persistence in hypertrophic scarring //Exp. Dermatol. 2015 Feb. Vol. 24 (2). P. 120–126. doi: 10.1111/exd.12601

Akoglu G., Tan C. , Ayvaz D.C., Tezcan I. Tumor necrosis factor α-308 G/A and interleukin 1 β-511 C/T gene polymorphisms in patients with scarring acne // J. Cosmet. Dermatol. 2019 Feb. Vol. 18 (1). P. 395–400. doi: 1 0.1111/jocd.12558

Shih B., Bayat A. Comparative genomic hybridization analysis of keloid tissue in Caucasians suggests possible involvement of HLA-DRB5 in disease pathogenesis // Arch. Dermatol. Res. 2012 Apr. Vol. 304 (3).P. 241–249. doi: 10.1007/s00403-011-1182-4.

Wu Y., Wang B., Li Y.H. et al. Meta-analy sis demonstrates association between Arg72Pro polymorphism in the P53 gene and susceptibility to keloids in the Chinese population // Genet. Mol. Res. 2012 Jun 29. Vol. 11 (2). P. 1701–1711. doi: 10.4238/2012

He L., Wu W.J., Yang J.K. et al. Two new susceptibility loci 1q24.2 and 11p11.2 confer risk to severe acne // Nat. Commun. 2014. Vol. 5: 2870.

Fujita M., Yamamoto Y., Jiang J.J. et al. NEDD4 is involved in infl ammation development during keloid formation // J. Invest. Dermatol. 2019 Feb. Vol. 139 (2). P. 333–341. doi: 10.1016/j.jid.2018.07.044.

Velez Edwards D.R., Tsosie K.S., Williams S.M. et al. Admixture mapping identifi es a locus at 15q21.2-22.3 associated with keloid formation in African Americans// Hum. Genet. 2014 Dec . Vol. 133 (12). P. 1513–1523. doi: 10.1007/s00439-014-1490-9.

Chen L., Li J., Li Q. et al. Overexpression of LncRNA AC067945.2 down-regulates collagen expression in skin fi broblasts and possibly correlates with the VEGF and Wnt signalling pathways // Cell. Physiol. Biochem. 2018. Vol. 45 (2) . P. 761–771. doi:10.1159/000487167.

Li J., Chen L., Cao C. et al. The long non-coding RNA LncRNA8975-1 is upregulated in hypertrophic scar fi broblasts and controls collagen expression // Cell. Physiol. Biochem. 2016. Vol. 40 (1–2). P. 326–334.

НОВЫЕ ПАТОГЕНЕТИЧЕСКИЕ ФАКТОРЫ АНДРОГЕНЗАВИСИМЫХ ДЕРМАТОПАТИЙ. д.м.н. Азимова Ф. В., Ходжаева М. Б. International Academy Journal Web of Scholar 7(37), July 2019.

ПАТОГЕНЕТИЧЕСКАЯ РОЛЬ АЛЛЕЛЕЙ ПОЛИМОРФНЫХ ВАРИАНТОВ ГЕНОВ ПРОЛИФЕРАЦИИ И ДИФФЕРЕНЦИРОВКИ КЕРАТИНОЦИТОВ ПРИ ТЯЖЕЛОЙ СТЕПЕНИ АКНЕ.Демина О.М., Международный научно-исследовательский журнал ▪ № 1 (127) ▪ Январь.

He L. Two new susceptibility loci 1q24.2 and 11p11.2 confer risk to severe acne / L. He, W.J. Wu, J.K. Yang et al. //Nat Commun. — 2014. — 5. — p. 2870.

Petridis C. Genome-wide meta-analysis implicates mediators of hair follicle development and morphogenesis in risk for severe acne / C. Petridis, A.A. Navarini, N. Dand et al. // Nat Commun. — 2018. — 9. — p.5075.

РОЛЬ ГЕНЕТИЧЕСКИХ ФАКТОРОВ ПРИ СЕМЕЙНОМ СЛУЧАЕ АКНЕ О. М. Демина, А. Г. Румянцев, Н. Н. Потекаев.ВЕСТНИК РГМУ 3, 2022 стр.36-39.

Nemchaninova O.B. et al. / Journal of Siberian Medical Sciences 2 (2020) 98–110

Downloads

Published

2024-07-31

How to Cite

Khamidova Farida Muinovna, & Khusinova Firuza Azgar Kizi. (2024). THE ROLE OF GENETIC MUTATIONS IN THE DEVELOPMENT OF ACNE. American Journal Of Biomedical Science & Pharmaceutical Innovation, 4(07), 33–48. https://doi.org/10.37547/ajbspi/Volume04Issue07-05