Articles
| Open Access |
https://doi.org/10.37547/ajast/Volume06Issue01-15
Synthesis And Structural Study Of Coordination Complexes Of 5-Methyl-1,2,4-Triazole With Co(Ii), Ni(Ii), Cu(Ii)
Abstract
In this study, coordination compounds of 5-methyl-1H-1,2,4-triazole with Co(II), Ni(II), and Cu(II) acetates were synthesized and characterized. The 5-methyl-1,2,4-triazole ligand (L) was obtained via a cyclization route using acetamidine hydrochloride and formamide, yielding a pale crystalline product (m.p. 46°C) in 78% yield. Reaction of L with cobalt, nickel, and copper (II) acetates in ethanol produced the corresponding metal–ligand complexes in good yields (75–82%). These complexes are insoluble in nonpolar solvents but dissolve readily in water and ethanol. The composition and structures of the complexes were investigated using infrared (IR) spectroscopy, thermogravimetric analysis (TGA/DTG/DTA), and scanning electron microscopy (SEM) with energy-dispersive X-ray analysis. IR spectral data revealed shifts in the triazole ring vibration bands upon complexation, indicating coordination of the ligand to the metal center via a ring nitrogen atom. SEM–EDS elemental analysis provided the C, H, N, O and metal percentages, consistent with empirical formulas of [ML2(CH₃COO)2] for M = Co, Ni, Cu. Thermal analysis showed multi-step decomposition for each complex, ultimately yielding metal oxide residues at high temperatures. Notably, the copper complex [CuL2(CH₃COO)2] displayed a major mass loss (~45%) around 680°C corresponding to the formation of CuO. The synthesized coordination compounds thus feature the triazole ligand coordinated through nitrogen donors, and their structures and stabilities have been confirmed by the combined physicochemical data.
Keywords
Co(II), Ni(II), Cu(II) acetates, ligand, complex compound
References
Romain Noel, Xinyi Song, Rong Jiang, Michael J. Chalmers, Patrick R. Griffin, and Theodore M. Kamenecka. Efficient Methodology for the Synthesis of 3-amino-1,2,4–triazoles. // J.Org.Chem. 2009,74,19,7595-7597.
Иванова Ю.С., Цаплин Г.В., Попков С.В. Метод получения N1-замещенных – 4–(1,2,4–триазол–1–илметил)–1,2,3–триазолов и изучение их фунгицидной активности. // Успехи в химии и химической технологии. Том ХХХIV.2020. №8.
Khadir A., Verreault J., Averill DA., Inhibition of antioxidants and hyperthermia enhance bleomycin – induced cytotoxicity and lipid peroxidation in Chinese hamster ovary cells. // Arch Biochem Biophys., 1999 Oct; 370(2):163-75.
MacCabe AP, Miro P, Ventura L, Ramon D. Glucose uptake in germinating Aspergillus nidulans conidia: involvement of the creA and sorA genes. // Microbiology 149:2129-2136.
Fauchere JL, Boutin JA. Исследования субстратной специфичности и ингибирования серотонин-N-ацетилтрансферазы человека. // J. Biol. Chem. 2000. 275 (12): 8794–805.
Lowe RF, Nelson J, Dang TN, Crowe PD, Paxuja A, McCarthy JR, Grigoriadis DE, Conlon P, Saunders J, Chen C, Szabo T, Chen TK, Bozigian. Rational design, synthesis, and structure−activity relationships of aryltriazoles as novel corticotropin-releasing factor-1 receptor antagonists. // HJ Med. Kimyo 2005; 48: 1540–1549. [PubMed: 15743196].
Marino JP, Fisher PW, Hofmann GA, Kirkpatrick RB, Janson CA, Jonson RK, Ma C, Mattern M, Meek TD, Rayan MD, Schulz C, Smit WW, Tew DG, Tomazek TA, Veber DF, Xiong WC, Yamamoto Y , Yamashita K, Yang G, Tompson SK. Highly potent inhibitors of methionine aminopeptidase-2 based on a 1,2,4- triazole pharmacophore. // J. Med. Kimyo 2007;50:3777–3785. [PubMed: 17636946].
А. В. Васильев, Е. В. Гриненко, А. О. Щукин, Т. Г. Федулина Инфракрасная спектроскопия органических и природных соединений. Cанкт-Петербург 2007. Ст-16.
Шаталова Т.Б., Шляхтин О.А., Веряева Е. Методы термического анализа. - Москва: 2011
Article Statistics
Copyright License
Copyright (c) 2026 R.X. Karimova, Z.M. Chalaboyeva

This work is licensed under a Creative Commons Attribution 4.0 International License.