Articles
| Open Access |
https://doi.org/10.37547/ajast/Volume05Issue12-32
Analysis Of Technological Operations For The Development Of Aluminum-Based High-Strength Nanostructured Materials (Coatings)
Abstract
The development of aluminum-based high-strength nanostructured materials and coatings is essential for advanced surface engineering applications. Their functional properties strongly depend on the technological operations employed during fabrication. This study analyzes the key technological stages involved in producing aluminum-based nanostructured coatings, including substrate preparation, thin film deposition, anodization, and post-treatment processes. Particular attention is paid to the influence of processing parameters on the formation of nanoscale structures and columnar morphologies. The analysis shows that optimization of technological operations allows effective control of structural characteristics, leading to improved hardness, elastic modulus, and mechanical stability of the coatings. The results demonstrate the potential of optimized aluminum-based nanostructured coatings for use in high-performance engineering and protective applications.
Keywords
Nanostructured coatings, post-treatment processes, elastic modulus, tantalum oxide
References
Ganjam, S., Wang, Y., Lu, Y., Banerjee, A., Lei, C. U., Krayzman, L., Kisslinger, K., Zhou, C., Li, R., Jia, Y., Liu, M., Frunzio, L., & Schoelkopf, R. J. (2024). Surpassing millisecond coherence in on chip superconducting quantum memories by optimizing materials and circuit design. Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-47857-6
Nickel, M. R., Melligan, G., McMullen, T. P. W., & Burrell, R. E. (2019). The effect of chemical additives in phosphoric acid anodization of aluminum-tantalum thin films. Thin Solid Films, 685. https://doi.org/10.1016/j.tsf.2019.06.033
Okamoto, H. (2010). Al-Ta (aluminum-tantalum). In Journal of Phase Equilibria and Diffusion (Vol. 31, Issue 6). https://doi.org/10.1007/s11669-010-9786-5
El-Eskandarany, M. S., Aoki, K., & Suzuki, K. (1992). Formation of amorphous aluminum tantalum nitride powders by mechanical alloying. Applied Physics Letters, 60(13). https://doi.org/10.1063/1.107251
Turakhodjaev, N. D., Tursunbaev, S. A., Odilov, F. U., Zokirov, R. S., & Kuchkarova, M. Kh. (2020). Vliyanie uslovii legirovaniya na svoistva belykh chugunov [Influence of alloying conditions on the properties of white cast irons]. In Tekhnika i tekhnologii mashinostroeniya (pp. 63–68).
Okayasu, M., Takeuchi, S., & Shiraishi, T. (2013). Corrosion and mechanical properties of cast aluminium alloys. International Journal of Cast Metals Research, 26(6), 319–329. https://doi.org/10.1179/1743133613Y.0000000067
Drevet, R., Souček, P., Mareš, P., Ondračka, P., Fekete, M., Dubau, M., & Vašina, P. (2025). Influence of oxygen flow on the structure, chemical composition, and dielectric strength of AlxTayOz thin films deposited by pulsed-DC reactive magnetron sputtering. Surface and Coatings Technology, 498. https://doi.org/10.1016/j.surfcoat.2025.131865
Tursunbaev, S., Turakhodjaev, N., Turakhujaeva, S., Ozodova, S., Hudoykulov, S., & Turakhujaeva, A. (2022). Reduction of gas porosity when alloying A000 grade aluminum with lithium fluoride. IOP Conference Series: Earth and Environmental Science, 1076(1), 012076. https://doi.org/10.1088/1755-1315/1076/1/012076
Gao, Y. X., Yi, J. Z., Lee, P. D., & Lindley, T. C. (2004). The effect of porosity on the fatigue life of cast aluminium–silicon alloys. Fatigue & Fracture of Engineering Materials & Structures, 27(7), 559–570. https://doi.org/10.1111/j.1460-2695.2004.00763.x
Roven, H. J., Nesbø, H., Werenskiold, J. C., & Seibert, T. (2005). Mechanical properties of aluminium alloys processed by severe plastic deformation: Comparison of different alloy systems and possible product areas. Materials Science and Engineering: A, 410–411, 426–429. https://doi.org/10.1016/j.msea.2005.08.153
Skejić, D., Dokšanović, T., Čudina, I., & Mazzolani, F. M. (2021). The basis for reliability-based mechanical properties of structural aluminium alloys. Applied Sciences, 11(10), 4485. https://doi.org/10.3390/app11104485
Anusionwu, B. C., Adebayo, G. A., & Madu, C. A. (2009). Thermodynamics and surface properties of liquid Al–Ga and Al–Ge alloys. Applied Physics A, 97(3), 533–541. https://doi.org/10.1007/s00339-009-5334-4
Miura, K., & Omi, K. (2024). Near-infrared light emission from aluminum-doped tantalum-oxide thin films prepared using a simple co-sputtering method. Results in Physics, 57. https://doi.org/10.1016/j.rinp.2024.107389
Hu, B. Q., Wang, X. M., Zhou, T., Zhao, Z. Y., Wu, X., & Chen, X. L. (2001). Transmittance and refractive index of the lanthanum strontium aluminium tantalum oxide crystal. Chinese Physics Letters, 18(2). https://doi.org/10.1088/0256-307X/18/2/342
Umarov, T. U., Tursunbaev, S. A., & Mardonov, U. T. (2018). Novye tekhnologicheskie vozmozhnosti povysheniya ekspluatatsionnoi nadezhnosti instrumentov dlya obrabotki kompozitsionnykh materialov [New technological possibilities for improving the operational reliability of tools for machining composite materials]. In Tekhnika i tekhnologii mashinostroeniya (pp. 70–74).
Hirsch, J., Skrotzki, B., & Gottstein, G. (Eds.). (2008). Aluminium alloys: The physical and mechanical properties (Vol. 1). Wiley-VCH.
Tursunbaev, S., Umarova, D., Kuchkorova, M., & Baydullaev, A. (2022). Study of machining accuracy in ultrasonic elliptical vibration cutting of alloyed iron alloy carbon with germanium. Journal of Physics: Conference Series, 2176(1), 012053. https://doi.org/10.1088/1742-6596/2176/1/012053
Sarvar, T., Nodir, T., Mardonov, U., Saydumarov, B., Kulmuradov, D., & Boltaeva, M. (2024). Effects of germanium (Ge) on hardness and microstructure of Al–Mg, Al–Cu, and Al–Mn system alloys. International Journal of Mechatronics and Applied Mechanics, (16), 179–184.
Lu, Q., Skeldon, P., Thompson, G. E., Habazaki, H., & Shimizu, K. (2005). Composition and density of non-thickness-limited anodic films on aluminium and tantalum. Thin Solid Films, 471(1–2). https://doi.org/10.1016/j.tsf.2004.04.061
Mann, A. E., & Newkirk, J. W. (2023). Fundamental Effects of Al and Ta on Microstructure and Phase Transformations in the Al–Cr–Mo–Ta–Ti Refractory Complex Concentrated Alloy System. Advanced Engineering Materials, 25(9). https://doi.org/10.1002/adem.202201449
Article Statistics
Copyright License
Copyright (c) 2025 Shohruh Hudoykulov, Sherzod Tashbulatov

This work is licensed under a Creative Commons Attribution 4.0 International License.