Articles | Open Access | https://doi.org/10.37547/ajast/Volume05Issue12-32

Analysis Of Technological Operations For The Development Of Aluminum-Based High-Strength Nanostructured Materials (Coatings)

Shohruh Hudoykulov , Tashkent State Technical University, 100095, University str. 2, Tashkent, Uzbekistan
Sherzod Tashbulatov , Tashkent State Technical University, 100095, University str. 2, Tashkent, Uzbekistan

Abstract

The development of aluminum-based high-strength nanostructured materials and coatings is essential for advanced surface engineering applications. Their functional properties strongly depend on the technological operations employed during fabrication. This study analyzes the key technological stages involved in producing aluminum-based nanostructured coatings, including substrate preparation, thin film deposition, anodization, and post-treatment processes. Particular attention is paid to the influence of processing parameters on the formation of nanoscale structures and columnar morphologies. The analysis shows that optimization of technological operations allows effective control of structural characteristics, leading to improved hardness, elastic modulus, and mechanical stability of the coatings. The results demonstrate the potential of optimized aluminum-based nanostructured coatings for use in high-performance engineering and protective applications.

Keywords

Nanostructured coatings, post-treatment processes, elastic modulus, tantalum oxide

References

Ganjam, S., Wang, Y., Lu, Y., Banerjee, A., Lei, C. U., Krayzman, L., Kisslinger, K., Zhou, C., Li, R., Jia, Y., Liu, M., Frunzio, L., & Schoelkopf, R. J. (2024). Surpassing millisecond coherence in on chip superconducting quantum memories by optimizing materials and circuit design. Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-47857-6

Nickel, M. R., Melligan, G., McMullen, T. P. W., & Burrell, R. E. (2019). The effect of chemical additives in phosphoric acid anodization of aluminum-tantalum thin films. Thin Solid Films, 685. https://doi.org/10.1016/j.tsf.2019.06.033

Okamoto, H. (2010). Al-Ta (aluminum-tantalum). In Journal of Phase Equilibria and Diffusion (Vol. 31, Issue 6). https://doi.org/10.1007/s11669-010-9786-5

El-Eskandarany, M. S., Aoki, K., & Suzuki, K. (1992). Formation of amorphous aluminum tantalum nitride powders by mechanical alloying. Applied Physics Letters, 60(13). https://doi.org/10.1063/1.107251

Turakhodjaev, N. D., Tursunbaev, S. A., Odilov, F. U., Zokirov, R. S., & Kuchkarova, M. Kh. (2020). Vliyanie uslovii legirovaniya na svoistva belykh chugunov [Influence of alloying conditions on the properties of white cast irons]. In Tekhnika i tekhnologii mashinostroeniya (pp. 63–68).

Okayasu, M., Takeuchi, S., & Shiraishi, T. (2013). Corrosion and mechanical properties of cast aluminium alloys. International Journal of Cast Metals Research, 26(6), 319–329. https://doi.org/10.1179/1743133613Y.0000000067

Drevet, R., Souček, P., Mareš, P., Ondračka, P., Fekete, M., Dubau, M., & Vašina, P. (2025). Influence of oxygen flow on the structure, chemical composition, and dielectric strength of AlxTayOz thin films deposited by pulsed-DC reactive magnetron sputtering. Surface and Coatings Technology, 498. https://doi.org/10.1016/j.surfcoat.2025.131865

Tursunbaev, S., Turakhodjaev, N., Turakhujaeva, S., Ozodova, S., Hudoykulov, S., & Turakhujaeva, A. (2022). Reduction of gas porosity when alloying A000 grade aluminum with lithium fluoride. IOP Conference Series: Earth and Environmental Science, 1076(1), 012076. https://doi.org/10.1088/1755-1315/1076/1/012076

Gao, Y. X., Yi, J. Z., Lee, P. D., & Lindley, T. C. (2004). The effect of porosity on the fatigue life of cast aluminium–silicon alloys. Fatigue & Fracture of Engineering Materials & Structures, 27(7), 559–570. https://doi.org/10.1111/j.1460-2695.2004.00763.x

Roven, H. J., Nesbø, H., Werenskiold, J. C., & Seibert, T. (2005). Mechanical properties of aluminium alloys processed by severe plastic deformation: Comparison of different alloy systems and possible product areas. Materials Science and Engineering: A, 410–411, 426–429. https://doi.org/10.1016/j.msea.2005.08.153

Skejić, D., Dokšanović, T., Čudina, I., & Mazzolani, F. M. (2021). The basis for reliability-based mechanical properties of structural aluminium alloys. Applied Sciences, 11(10), 4485. https://doi.org/10.3390/app11104485

Anusionwu, B. C., Adebayo, G. A., & Madu, C. A. (2009). Thermodynamics and surface properties of liquid Al–Ga and Al–Ge alloys. Applied Physics A, 97(3), 533–541. https://doi.org/10.1007/s00339-009-5334-4

Miura, K., & Omi, K. (2024). Near-infrared light emission from aluminum-doped tantalum-oxide thin films prepared using a simple co-sputtering method. Results in Physics, 57. https://doi.org/10.1016/j.rinp.2024.107389

Hu, B. Q., Wang, X. M., Zhou, T., Zhao, Z. Y., Wu, X., & Chen, X. L. (2001). Transmittance and refractive index of the lanthanum strontium aluminium tantalum oxide crystal. Chinese Physics Letters, 18(2). https://doi.org/10.1088/0256-307X/18/2/342

Umarov, T. U., Tursunbaev, S. A., & Mardonov, U. T. (2018). Novye tekhnologicheskie vozmozhnosti povysheniya ekspluatatsionnoi nadezhnosti instrumentov dlya obrabotki kompozitsionnykh materialov [New technological possibilities for improving the operational reliability of tools for machining composite materials]. In Tekhnika i tekhnologii mashinostroeniya (pp. 70–74).

Hirsch, J., Skrotzki, B., & Gottstein, G. (Eds.). (2008). Aluminium alloys: The physical and mechanical properties (Vol. 1). Wiley-VCH.

Tursunbaev, S., Umarova, D., Kuchkorova, M., & Baydullaev, A. (2022). Study of machining accuracy in ultrasonic elliptical vibration cutting of alloyed iron alloy carbon with germanium. Journal of Physics: Conference Series, 2176(1), 012053. https://doi.org/10.1088/1742-6596/2176/1/012053

Sarvar, T., Nodir, T., Mardonov, U., Saydumarov, B., Kulmuradov, D., & Boltaeva, M. (2024). Effects of germanium (Ge) on hardness and microstructure of Al–Mg, Al–Cu, and Al–Mn system alloys. International Journal of Mechatronics and Applied Mechanics, (16), 179–184.

Lu, Q., Skeldon, P., Thompson, G. E., Habazaki, H., & Shimizu, K. (2005). Composition and density of non-thickness-limited anodic films on aluminium and tantalum. Thin Solid Films, 471(1–2). https://doi.org/10.1016/j.tsf.2004.04.061

Mann, A. E., & Newkirk, J. W. (2023). Fundamental Effects of Al and Ta on Microstructure and Phase Transformations in the Al–Cr–Mo–Ta–Ti Refractory Complex Concentrated Alloy System. Advanced Engineering Materials, 25(9). https://doi.org/10.1002/adem.202201449

Article Statistics

Copyright License

Download Citations

How to Cite

Shohruh Hudoykulov, & Sherzod Tashbulatov. (2025). Analysis Of Technological Operations For The Development Of Aluminum-Based High-Strength Nanostructured Materials (Coatings). American Journal of Applied Science and Technology, 5(12), 180–184. https://doi.org/10.37547/ajast/Volume05Issue12-32