Articles
| Open Access |
https://doi.org/10.37547/ajast/Volume05Issue12-31
Comprehensive Analysis Of Matrix-Type Nanostructured Columnar Composite Coatings Based On Anodic Aluminum And Tantalum Oxides
Abstract
Matrix-type nanostructured columnar composite coatings based on anodic aluminum oxide (Al₂O₃) and tantalum oxide (Ta₂O₅) represent a promising class of functional materials for advanced surface engineering applications. The anodization process enables the formation of ordered Nano porous and columnar structures with a high specific surface area, which can effectively serve as a matrix for composite oxide systems. In this study, the structural and morphological characteristics of anodic Al₂O₃–Ta₂O₅ composite coatings are analyzed, with particular emphasis on the formation of matrix-based nanostructured columnar architectures. The article analyzes the micromechanical properties of matrix nanostructures.
Keywords
Aluminum oxide, micromechanical properties, Al alloys, anodization process
References
Drevet, R., Souček, P., Mareš, P., Ondračka, P., Dubau, M., Kolonits, T., Czigány, Z., Balázsi, K., & Vašina, P. (2024). Aluminum tantalum oxide thin films deposited at low temperature by pulsed direct current reactive magnetron sputtering for dielectric applications. Vacuum, 221. https://doi.org/10.1016/j.vacuum.2023.112881
Nickel, M. R., Melligan, G., McMullen, T. P. W., & Burrell, R. E. (2019). The effect of chemical additives in phosphoric acid anodization of aluminum-tantalum thin films. Thin Solid Films, 685. https://doi.org/10.1016/j.tsf.2019.06.033
Turakhodjaev, N. D., Tursunbaev, S. A., Odilov, F. U., Zokirov, R. S., & Kuchkarova, M. Kh. (2020). Vliyanie uslovii legirovaniya na svoistva belykh chugunov [Influence of alloying conditions on the properties of white cast irons]. In Tekhnika i tekhnologii mashinostroeniya (pp. 63–68).
Okayasu, M., Takeuchi, S., & Shiraishi, T. (2013). Corrosion and mechanical properties of cast aluminium alloys. International Journal of Cast Metals Research, 26(6), 319–329. https://doi.org/10.1179/1743133613Y.0000000067
Umarov, T. U., Tursunbaev, S. A., & Mardonov, U. T. (2018). Novye tekhnologicheskie vozmozhnosti povysheniya ekspluatatsionnoi nadezhnosti instrumentov dlya obrabotki kompozitsionnykh materialov [New technological possibilities for improving the operational reliability of tools for machining composite materials]. In Tekhnika i tekhnologii mashinostroeniya (pp. 70–74).
Hirsch, J., Skrotzki, B., & Gottstein, G. (Eds.). (2008). Aluminium alloys: The physical and mechanical properties (Vol. 1). Wiley-VCH.
Tursunbaev, S., Umarova, D., Kuchkorova, M., & Baydullaev, A. (2022). Study of machining accuracy in ultrasonic elliptical vibration cutting of alloyed iron alloy carbon with germanium. Journal of Physics: Conference Series, 2176(1), 012053. https://doi.org/10.1088/1742-6596/2176/1/012053
Sarvar, T., Nodir, T., Mardonov, U., Saydumarov, B., Kulmuradov, D., & Boltaeva, M. (2024). Effects of germanium (Ge) on hardness and microstructure of Al–Mg, Al–Cu, and Al–Mn system alloys. International Journal of Mechatronics and Applied Mechanics, (16), 179–184.
Drevet, R., Souček, P., Mareš, P., Ondračka, P., Fekete, M., Dubau, M., & Vašina, P. (2025). Influence of oxygen flow on the structure, chemical composition, and dielectric strength of AlxTayOz thin films deposited by pulsed-DC reactive magnetron sputtering. Surface and Coatings Technology, 498. https://doi.org/10.1016/j.surfcoat.2025.131865
Tursunbaev, S., Turakhodjaev, N., Turakhujaeva, S., Ozodova, S., Hudoykulov, S., & Turakhujaeva, A. (2022). Reduction of gas porosity when alloying A000 grade aluminum with lithium fluoride. IOP Conference Series: Earth and Environmental Science, 1076(1), 012076. https://doi.org/10.1088/1755-1315/1076/1/012076
Gao, Y. X., Yi, J. Z., Lee, P. D., & Lindley, T. C. (2004). The effect of porosity on the fatigue life of cast aluminium–silicon alloys. Fatigue & Fracture of Engineering Materials & Structures, 27(7), 559–570. https://doi.org/10.1111/j.1460-2695.2004.00763.x
Roven, H. J., Nesbø, H., Werenskiold, J. C., & Seibert, T. (2005). Mechanical properties of aluminium alloys processed by severe plastic deformation: Comparison of different alloy systems and possible product areas. Materials Science and Engineering: A, 410–411, 426–429. https://doi.org/10.1016/j.msea.2005.08.153
Skejić, D., Dokšanović, T., Čudina, I., & Mazzolani, F. M. (2021). The basis for reliability-based mechanical properties of structural aluminium alloys. Applied Sciences, 11(10), 4485. https://doi.org/10.3390/app11104485
Anusionwu, B. C., Adebayo, G. A., & Madu, C. A. (2009). Thermodynamics and surface properties of liquid Al–Ga and Al–Ge alloys. Applied Physics A, 97(3), 533–541. https://doi.org/10.1007/s00339-009-5334-4
Miura, K., & Omi, K. (2024). Near-infrared light emission from aluminum-doped tantalum-oxide thin films prepared using a simple co-sputtering method. Results in Physics, 57. https://doi.org/10.1016/j.rinp.2024.107389
Hu, B. Q., Wang, X. M., Zhou, T., Zhao, Z. Y., Wu, X., & Chen, X. L. (2001). Transmittance and refractive index of the lanthanum strontium aluminium tantalum oxide crystal. Chinese Physics Letters, 18(2). https://doi.org/10.1088/0256-307X/18/2/342
Article Statistics
Copyright License
Copyright (c) 2025 Shohruh Hudoykulov, Sherzod Tashbulatov, Laylo Xaytmetova

This work is licensed under a Creative Commons Attribution 4.0 International License.