Articles
| Open Access |
https://doi.org/10.37547/ajast/Volume05Issue12-28
Analysis Of Thermal And Technical Parameters Of Alternative Fuels Obtained From Biomass Pyrolysis
Abstract
This study is devoted to the analysis of the elemental composition of the main products formed during biomass pyrolysis, namely pyrolysis liquid, pyrolysis gas, and pyrolysis char. The research scientifically evaluates the influence of the physicochemical and structural properties of biomass feedstock, particularly the relative proportions of lignocellulosic components—cellulose, hemicellulose, and lignin—on the composition of pyrolysis products. The analytical results demonstrate that lignin-rich biomass feedstocks produce pyrolysis char with a significantly higher carbon content, which can be attributed to an intensified carbonization process. In contrast, biomass rich in cellulose and hemicellulose generates a greater amount of volatile compounds during pyrolysis, leading to increased yields of pyrolysis liquid and gas. The presence of oxygen-rich functional groups was found to increase the oxygen content in the pyrolysis liquid and gas, thereby influencing their calorific value. Furthermore, the low nitrogen content confirms the environmental advantage of biomass pyrolysis. The obtained results are of considerable scientific and practical importance for biomass feedstock selection, optimization of pyrolysis technologies, and preliminary assessment of raw materials for targeted product generation. The conducted analysis indicates that biomass pyrolysis represents a promising pathway for energy production, chemical synthesis, preparation of solid adsorbents, and the production of renewable fuels.
Keywords
Biomass pyrolysis, lignocellulosic components, physicochemical and structural properties
References
Узаков Г.Н., Давланов Х.А., Тошмаматов Б.М. Энергоэффективные системы и технологии с исползованием альтернативных источников энергии. // Альтернативная энергетика. Научно – технический журнал. - 2021. - №1. - с. 7-20.
Toshmamatov B. Development of automation and control system of waste gas production process based on information technology. // Communications in Computer and Information Science. – 2024. -2112. - PP.196–205.
Toshmamatov B., Kodirov I. and Davlonov Kh. Determination of the energy efficiency of a flat reflector solar air heating collector with a heat accumulator. // E3S Web of Conferences. – 2023. – 402. – P. 05010.
Kodirov I.N., Toshmamatov B.M., Aliyarova L.A., Shomuratova S.M. and Chorieva S. Experimental study of heliothermal processing of municipal solid waste based on solar energy. // IOP Conf. Series: Earth and Environmental Science. – 2022. – 1070. - P. 012033.
Baruah D., Baruah D.C. Modeling of biomass gasification: A review. // Renew. Sust. Energ. Rev. – 2014. – 39. – pp. 806–815.
Antar M., Lyu D., Nazari M., Shah A., Zhou X., Smith D.L. Biomass for a sustainable bioeconomy: an overview of world biomass production and utilization. // Renew. Sustain. Energy Rev. – 2021. – No. 139. –p. 110691.
Shafaghat H., Rezaei P.S., Ro D., Jae J., Kim B.-S., Jung S.-C., Sung B.H., Park Y.-K. In-situ catalytic pyrolysis of lignin in a bench-scale fixed bed pyrolyzer, // J. Ind. Eng. Chem. -2017. – 54. –pp. 447–453.
Mohammad O., Khan M., Unyay H., Slezak R., Szufa S., Onwudili J.A. Assessments of sustainable chemicals and bioenergy potentials of selected lignocellulosic biomass feedstocks in Poland via physicochemical characterisation and pyrolysis. // Biomass Bioenergy. – 2025. –No. 203. – p. 108302.
Zhang X., Zhang Ya., Zhang Sh., Yao L., Hao Y. Lignocellulosic biomass pyrolysis: A review on the pretreatment and catalysts. // Fuel Processing Technology. – 2025. – 279. – p. 108352.
Arif M., Li Y., El-Dalatony M.M., Zhang C., Li X., Salama E.-S. A complete characterization of microalgal biomass through FTIR/TGA/CHNS analysis: an approach for biofuel generation and nutrients removal. // Renew. Energy -2021. – 163. –pp. 1973–1982.
Benés M., Bilbao R., Santos J.M., Alves Melo J., Wisniewski Jr.A., Fonts I. Hydrodeoxygenation of lignocellulosic fast pyrolysis bio-oil: characterization of the products and effect of the catalyst loading ratio. // Energy Fuels. -2019. - 33 (5). – pp. 4272–4286.
Bertin C., Cruch´e C., Chacon-Huete ´ F., Forgione P., Collins S.K., Decomposition of lignin models enabled by copper-based photocatalysis under biphasic conditions. // Green. Chem. – 2022. - 24 (11). – pp. 4414–4419.
Kumar A., Kumar N., Baredar P., Shukla A. A review on biomass energy resources, potential, conversion and policy in India. // Renew. Sustain. Energy Rev. - 2015. – 45. –pp. 530–539.
Antar M., Lyu D., Nazari M., Shah A., Zhou X., Smith D.L. Biomass for a sustainable bioeconomy: an overview of world biomass production and utilization. // Renew. Sustain. Energy Rev. - 2021. – 139. - 110691.
Hsieh D., Capareda S., Placido J. Batch pyrolysis of acid-treated rice straw and potential products for energy and biofuel production. // Waste Biomass Valoriz. – 2015. - 6 (3). – pp. 417–424.
Ozbay N., Pütün A.E., Pütün E. Bio-oil production from rapid pyrolysis of cottonseed cake: product yields and compositions. // Int. J. Energy Res. – 2006. -30. – pp. 501–510.
Tsai W.T., Lee M.K., Chang Y.M. Fast pyrolysis of rice husk: Product yields and compositions. // Bioresour. Technol. – 2007. – 98. – pp. 22–28.
Garcia-Perez M., Wang X.S., Shen J., Rhodes M.J., Tian F.J., Lee W.J. Wu H.W., Li C.Z. Fast pyrolysis of oil mallee woody biomass: Effect of temperature on the yield and quality of pyrolysis products. // Ind. Eng. Chem. Res. – 2008. – 47. – pp. 1846–1854.
Hsieh D., Capareda S., Placido, J. Batch pyrolysis of acid-treated rice straw and potential products for energy and biofuel production. // Waste Biomass Valoriz. – 2015. - 6 (3). – pp. 417–424.
Huang Y., Sekyere D.T., Zhang J., Tian Y. Fast pyrolysis behaviors of biomass with high contents of ash and nitrogen using TG-FTIR and Py-GC/MS. // J. Anal. Appl. Pyrolysis. – 2023. – No. 170. - p. 105922.
Guo Z., Wang S., Gu Y., Xu G., Li X., Luo Z. Separation characteristics of biomass pyrolysis oil in molecular distillation. // Sep. Purif. Technol. – 2010. - 76 (1). – pp. 52–57.
Arregi A., Lopez G., Amutio M., Barbarias I., Bilbao J., Olazar M. Hydrogen production from biomass by continuous fast pyrolysis and in-line steam reforming. - RSC Adv. – 2016. - 6 (2016). – pp. 25975–25985.
Amutio M., Lopez G., Artetxe M., Elordi G., Olazar M., Bilbao J. Influence of temperature on biomass pyrolysis in a conical spouted bed reactor, Resour. // Conserv. Recycl. – 2012. – 59. – pp. 23–31.
Article Statistics
Copyright License
Copyright (c) 2025 Toshmamatov B.M., Uzboev M.D., Mamatova M.Sh.

This work is licensed under a Creative Commons Attribution 4.0 International License.