Articles | Open Access | https://doi.org/10.37547/ajast/Volume05Issue11-05

An Algorithm For Selecting Informative Symbols Based On Determining The Measure Of Information In A Nominally Informed Space

Juraev Gulomjon Primovich , International Innovation University, Doctor of Philosophy in Technical Sciences (PhD), Uzbekistan
Saparov Saidqul Khojamurotovich , Tashkent State University of Economics, Doctor of Philosophy in Technical Sciences (PhD), Uzbekistan

Abstract

The article reveals the issue of reducing the size of the phase of features describing objects, from data mining to brain cancer diseases. Initially, with the support of specialists in the field of medicine, 218 objects of the 4th class were conducted (it is a paid astrocytoma of the right hemisphere of the brain; Adenoma of the cellar region of the brain; Glioblastoma of the right-sided region of the brain; Meningioma of the right frontal region of the brain) and a training sample of 19 characters is formed.  In this educational selection, the features characterizing the objects of the class are expressed as a nominal value. For this reason, this article proposes an algorithm for solving the problem of choosing a set of informative symbols based on determining the measurement of information in a nominal data space.

Keywords

Brain cancer, learning selection, nominal data space

References

World Health Organization: Cancer. World Health Organization website 2019. https://www.who.int/ru/newsroom/fact-sheets/detail/cancer

https://kun.uz/uz/news/2022/09/16/bugungi-kunda-ozbekistonda-qon-saratoni-bilan-ogrigan-bemorlarga-qanday-yordam-korsatilyapti

Быкова В.В., Катаева А.В. Методы и средства анализа информативности признаков при обработке медицинских данных//Программные продукты и системы/Software & Systems № 2 (114), 2016.-c. 172-178.

Фазылов Ш.Х., Нишанов А.Х., Маматов Н.С. Методы и алгоритмы выбора информативных признаков на основе эвристических критериев информативности//Монография.-Т.: Фан ва технология.-Ташкент, 2017.-132 с.

Nishanov A. Ruzibaev O. Tran N. Modification of decision rules 'ball Apolonia' the problem of classification// 2016 International Conference on Information Science and Communications Technologies, ICISCT 2016 (2016). DOI: 10.1109/ICISCT.2016.7777382.

https://www.webofscience.com/wos/woscc/full-record/WOS:000390522500007

Nishanov A., Saidrasulov Sh., Babadjanov E. // Analysis of Methodology Of Rating Evaluation Of Digital Economy And E-Government Development In Uzbekistan // International Journal Of Early Childhood Special Education// Volume:14 Issue:2 2022.

DOI10.9756/INT-JECSE/V14I2.230, p 2447-2452

https://www.webofscience.com/wos/woscc/full-record/WOS:000806030700037

Nishanov A., Ruzibaev O., Chedjou J. C., Kyamakya K., Abhiram, Kolli, De Silva, Djurayev G., Khasanova M. // Algorithm for the selection of informative symptoms in the classification of medical data // Developments Of Artificial Intelligence Technologies In Computation And Robotics// Volume:12, 2020, p 647-658.

https://www.webofscience.com/wos/woscc/full-record/WOS:000656123200078

Ashok B., Aruna P. Comparison of Feature selection methods for diagnosis of cervical cancer using SVM classifier//Journal of Engineering Research and Applications. ISSN: 2248-9622, Vol. 6, Issue 1, (Part-1) January 2016.-pp. 94-99.

Bolón-Canedo, V. & Alonso-betanzos, A. Ensembles for feature selection: A review and future trends//Information Fusion 52(2019).-рр. 1-12.

Emary, E., Zawbaa, H. M. & Hassanien, A. E. Binary grey wolf optimization approaches for feature selection//Neurocomputing 172, 2016.-рр.371-381.

Faris, H. et al. An efficient binary Salp Swarm Algorithm with crossover scheme for feature selection problems//Knowledge-based Systems 154, 2018.-pp. 43-67.

Gao, W., Hu, L. & Zhang, P. Class-specific mutual information variation for feature selection//Pattern Recognition 79, 2018.-pp. 328-339.

Gao, W., Hu, L., Zhang, P. & He, J. Feature selection considering the composition of feature relevancy//Pattern Recognition Letters 112, 2018.-pp. 70-74.

Hussien A., Hassanien A., Houssein E., et al.See more. S-shaped binary whale optimization algorithm for feature selection//Advances in Intelligent Systems and Computing, Vol. 727, 2019.-pp. 79-87.

Li, J. & Liu, H. Challenges of Feature Selection for Big Data Analytics//IEEE Intelligent Systems 32, (2017).-рр. 9-15.

Emary E. Zawbaa H. Hassanien A. Binary ant lion approaches for feature selection// Neurocomputing. 2016 vol: 213, рр.54-65.

Jović, A., Brkić, K. & Bogunović, N. A review of feature selection methods with applications//38th International Convention on Information and Communication Technology, Electronics and Microelectronics, MIPRO 2015 - Proceedings (2015), pp.1200-1205.

Liu, C., Wang, W., Zhao, Q., Shen, X. & Konan, M. A new feature selection method based on a validity index of feature subset. Pattern Recognition Letters 92, (2017), рр.1-8.

Article Statistics

Copyright License

Download Citations

How to Cite

Juraev Gulomjon Primovich, & Saparov Saidqul Khojamurotovich. (2025). An Algorithm For Selecting Informative Symbols Based On Determining The Measure Of Information In A Nominally Informed Space. American Journal of Applied Science and Technology, 5(11), 22–27. https://doi.org/10.37547/ajast/Volume05Issue11-05