Articles | Open Access | https://doi.org/10.37547/ajast/Volume05Issue08-11

Bioclimatic Modeling Of Phlomoides Sogdiana (Pazij & Vved.) Salmaki

Xolbutayeva Muqaddas Mamatmurotovna , Associate professor at Academic Lyceum of the Jizzakh Polytechnic Institute, Uzbekistan
Xolbutayev Sherbek , Lecturer at Academic Lyceum of the Jizzakh Polytechnic Institute, Uzbekistan

Abstract

The article presents data obtained through bioclimatic modeling of Phlomoides sogdiana, a species distributed in the flora of Uzbekistan whose current range has been shrinking. The study revealed that the species is distributed in Jizzakh, Samarkand, Navoi, Kashkadarya, and Surkhandarya regions. For the first time, a bioclimatic model map of Ph. sogdiana was created. Under future climate scenarios SSP1-RCP 2.6 and SSP5-RCP 8.5, an increase of +1℃ in the annual mean temperature is predicted to have a positive effect on the species’ growth, leading to an expansion of its potential distribution range.

Keywords

Arel, Chatkal, Malguzar

References

Akbarov F.I., Jabborov A.M., Tojibayev K.SH. Ranunculus rubrocalyx Regel ex Kom. geografik tarqalishini modellashtirish va uning tahlili //Xorazm Ma’mun akademiyasi axborotnomasi, 2021. №1. – B. 29-37.

Akbarov F.I., Tojibayev K.SH. Curxondaryo viloyati florasi ayrim endem turlarning bioiqlimiy modelini yaratish //Namangan davlat universiteti ilmiy axborotnomasi. – Namangan, 2022. № 4. – B. 127-133.

Brun, Philipp; Zimmermann, Niklaus E.; Hari, Chantal; Pellissier, Loïc; Karger, Dirk Nikolaus (2022). CHELSA-BIOCLIM+ A novel set of global climate-related predictors at kilometre-resolution. EnviDat. https://doi.org/10.16904/envidat.332

Cabeza, M., Araujo, M.B., Wilson, R.J., Thomas, C.D., Cowley, M.J.R. & Moilanen, A. (2004) Combining probabilities of occurrence with spatial reserve design. Journal of Applied Ecology, 41, 252–262.

Daminova N.E. Farg’ona vodiysi dendroflorasi: Diss. avtoref. b.f.f.d. – Toshkent, 2023. – 44 b.

Elith, J., Graham, C.H., Anderson, R.P., Dudik, M., Ferrier, S., Guisan, A., Hijmans, R.J., Huettmann, F., Leathwick, J.R., Lehmann, A., Li, J., Lohmann, L.G., Loiselle, B.A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J.M., Peterson, A.T., Phillips, S.J., Richardson, K., Scachetti-Pereira, R., Schapire, R.E., Soberon, J., Williams, S., Wisz, M.S. & Zimmermann, N.E. (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29, 129–151.

Eyring, V. et al., 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design 12 and organization. Geoscientific Model Development, 9(5), 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016

Fick S. E., Hijmans R. J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas //International journal of climatology. – 2017. – T. 37. – №. 12. – S. 4302-4315.

G‘ulomov R.K. Farg‘ona vodiysida tarqalgan Phlomoides Moench turkumi (taksonomiyasi, geografiyasi, ekologiyasi va muhofaza choralari): Diss. avtoref. b.f.f.d. – Toshkent, 2022. – 44 b.

Hengl T. et al. SoilGrids250m: Global gridded soil information based on machine learning //PLoS one. – 2017. – T. 12. – №. 2. – S. e0169748.

Islam, Kamrul, Md Farhadur Rahman, Kazi Nazrul Islam, Tapan Kumar Nath, and Mohammed Jashimuddin. Modeling spatiotemporal distribution of Dipterocarpus turbinatus Gaertn. F in Bangladesh under climate change scenarios. // Journal of Sustainable Forestry – 2020. – №39 (3). – R. 221-241.

Lee, June-Yi, et al. "Future global climate: scenario-based projections and near-term information." IPCC, 2021. 1-195.

O’Neill, B.C. et al., 2016: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geoscientific Model 59 Development, 9(9), 3461–3482, https://doi.org/10.5194/gmd-9-3461-2016

Olonova M.V., Gudkova P.D., SHomurodov X.F., Adilov B.A., Raximova N.K. Xabibullaev B.SH., Polvonov F.I. Turlarning bioiqlim modelini yaratish: amaliy ishlar uchun topshiriq va ularning bajarilishiga oid metodik ko‘rsatma. Toshkent: Botanika instituti, 2021. – 112 s.

Phillips S. J., Anderson R. P., Schapire R. E. Maximum entropy modeling of species geographic distributions //Ecological modelling. – 2006. – T. 190. – №. 3-4. – S. 231-259.

Raxworthy, C.J., Martinez-Meyer, E., Horning, N., Nussbaum, R.A., Schneider, G.E., Ortega-Huerta, M.A. & Peterson, A.T. (2003) Predicting distributions of known and unknown reptile species in Madagascar. Nature, 426, 837–841.

Rushton, S.P., Ormerod, S.J. & Kerby, G. (2004) New paradigms for modelling species distributions? Journal of Applied Ecology, 41, 193–200.

Williams, J. N., Seo, C., Thorne, J., Nelson, J. K., Erwin, S., O’Brien, J. M., & Schwartz, M. W. (2009). Using species distribution models to predict new occurrences for rare plants. Diversity and Distributions, 15(4), 565-576.

Wayne G. P. Representative Concentration Pathways //Skeptical science. – 2014. – T. 24.

Wei B. et al. Predicting the current and future cultivation regions of Carthamus tinctorius L. using MaxEnt model under climate change in China //Global Ecology and Conservation. – 2018. – T. 16. – S. e00477

Zacharias, M.A. & Gregr, E.J. (2005) Sensitivity and vulnerability in marine environments: an approach to identifying vulnerable marine areas. Conservation Biology, 19, 86–97.

Global Biodiversity Information Facility (GBIF, www.gbif.org)

https://www.plantarium.ru

https://www.inaturalist.org

Article Statistics

Copyright License

Download Citations

How to Cite

Xolbutayeva Muqaddas Mamatmurotovna, & Xolbutayev Sherbek. (2025). Bioclimatic Modeling Of Phlomoides Sogdiana (Pazij & Vved.) Salmaki. American Journal of Applied Science and Technology, 5(08), 64–71. https://doi.org/10.37547/ajast/Volume05Issue08-11