Articles | Open Access | https://doi.org/10.37547/ajast/Volume05Issue08-09

Analysis And Optimization Of Multilayer Silicon Structures Via Ellipsometry For Solar Cell Efficiency

Soliyev O.M. , Andijan State University, Uzbekista

Abstract

This study presents a comprehensive analysis of multilayer silicon-based structures using spectroscopic ellipsometry to enhance the performance of solar cells. By measuring ellipsometric parameters (Ψ and Δ) across a wide spectral range and applying effective medium approximations, the optical properties of monocrystalline (c-Si), polycrystalline (pc-Si), and amorphous silicon (a-Si) layers are thoroughly investigated. The research incorporates numerical modeling, structural reconstruction, and cross-sectional transmission electron microscopy (XTEM) to validate layer thickness, composition, and surface morphology. The results highlight the impact of grain boundaries, surface roughness, and void fractions on light absorption and penetration depth, particularly in the short-wavelength region. The proposed methodology enables accurate characterization and optimization of thin-film structures, contributing to improved solar energy conversion efficiency.

Keywords

Spectroscopic ellipsometry, polycrystalline silicon, multilayer structures

References

Rzhanov, A. V., & Ilyin, L. A. (Eds.). (2009). Ellipsometry: Theory, methods, applications (192 p.). Nauka. [in Rus.]

Fujiwara, H. (2007). Spectroscopic ellipsometry: Principles and applications. John Wiley & Sons.

Tompkins, H. G., & Irene, E. A. (Eds.). (2005). Handbook of ellipsometry. William Andrew Publishing.

Rzhanov, A. V. (Ed.). (2007). Ellipsometry – A method for surface investigation (180 p.). Nauka. [in Rus.]

Jellison, G. E., & Modine, F. A. (2016). Parameterization of the optical functions of amorphous materials in the interband region. Applied Physics Letters, 69(3), 371–373. (https://doi.org/10.1063/1.118064)

Shvets, V. A., et al. (2009). Ellipsometry – A precision method for monitoring thin-film structures with sub-nanometer resolution. Russian Nanotechnology, 4 (3–4), 72–83. [in Rus.]

Prokopenko, V. T., et al. (2018). Ellipsometry of optical compounds of optoelectronic element materials. Izvestiya Vysshikh Uchebnykh Zavedenii. Instrument Engineering, 51(10). [in Rus.]

Shokhovets, S., Fabel, B., Kranz, L., & Lux-Steiner, M. C. (2010). Optical properties of polycrystalline silicon films characterized by spectroscopic ellipsometry and transmission electron microscopy. Thin Solid Films, 518 (22), 6381–6385. (https://doi.org/10.1016/j.tsf.2010.06.064)

Alonso, M. I., Garriga, M., Tobías, I., & Morante, J. R. (2003). Optical functions of hydrogenated amorphous silicon: Effect of deposition temperature. Journal of Applied Physics, 94 (1), 611–617. (https://doi.org/10.1063/1.1577406)

Khashim, K., et al. (2017). Application of spectroscopic ellipsometry for the characterization of nanoscale films. Physics of the Solid State, 59(11), 2191–2195. [in Rus.]

Ghita, B. V., Florea, S., Mihaila, M., & Brinza, F. (2014). Analysis of light absorption in thin-film solar cells using spectroscopic ellipsometry. Solar Energy, 107, 757–765. (https://doi.org/10.1016/j.solener.2014.06.022)

Article Statistics

Copyright License

Download Citations

How to Cite

Soliyev O.M. (2025). Analysis And Optimization Of Multilayer Silicon Structures Via Ellipsometry For Solar Cell Efficiency. American Journal of Applied Science and Technology, 5(08), 54–59. https://doi.org/10.37547/ajast/Volume05Issue08-09