
EXPLORING THE POTENTIAL FOR FABRICATION OF A FILM-BASED PHOTOTHERMAL CONVERTER
Abstract
This paper presents the results of a study on the creation of a combined film photothermoelectric converter from film photo- and thermal converters. The relevance of such research is substantiated. A list of questions necessary when solving scientific problems in this direction is provided. The importance of selecting materials and types of converters for obtaining effective hybrid elements is described. The limits of temperature intervals at which a positive result of experimentation of structures can be expected are shown. The calculation method and conditions for selecting the initial data for mathematical calculations of the characteristics of the converters are outlined. The results of the study are presented and the dependence of the electrophysical properties of the thermoelements and the efficiency of the converters on the temperature of the samples are analyzed. A conclusion is drawn about the possibility of creating such current sources. The issue of creating highly efficient solar energy converters has attracted the attention of researchers worldwide on a large scale.
Keywords
Conversion, photocell, thermoelement, photothermal element
References
Kraemer D., Hu, L., Muto, A., Chen, X., Chen, G., Chiesa, M., (2008). Photovoltaic-thermoelectric hybrid systems: a general optimization methodology. Appl. Phys. Lett. 92, 243503.
Vorobiev Yu., Gonzalez-Hernandez, J., Bulat, L., 2006a. Thermalphotovoltaic solar hybrid system for efficient solar energy conversion. Sol. Energy 80, 170–176.
Kasimaxunova А.М., Nabiyev M.B. 2003. Fototermoelektricheskie preobrazovateli konsentrirovannogo izlucheniya. J.: Pisma v LTF. 29(6). p.76-81.
Mamadaliyeva L.K. Tashkent (2020). Razrabotka visokoeffektivnogo selektivnogo fototermopreobrazovatelya na osnove geterostrukturnih fototermopreobrazovateley i termoelementov iz BiTeSb-BiTeSe. Avtoreferat na soiskanie uchenoy stepeni doktora nauk.
Zokirov S.I., Tashkent, (2021). Issledovanie opticheskix parametrov fotoelektricheskoy chasti fototermogeneratorov, prednaznachennih dlya raboti v selektivnih izlucheniyax. Avtoreferat na soiskanie uchenoy stepeni doktora filosofii (PhD).
Vigdorovich V.N., Uxlinov G.A. (1985) Plenochniye termoelektricheskiye preobrazovateli dlya izmeritelnoy texniki i priborostroyeniya. Elektron. promishlennost. V.2 (140). p.10-13.
Golsman B.M., Dashevskiy Z.M., Kaydanov V.I., Kolomoyes N.V. (1985) Plenochniye termoelementi. M.: Nauka, p.229.
Kelbixanov R.K. (2008) Struktura i svoystva plenok tellura, poluchennыx v kvazizamknutom ob’yeme i s prilojeniyem postoyannogo elektricheskogo polya: Dis. …kand. fiz.-mat. nauk. Maxachkala, 147.
KorotkovA.S., Loboda V.V., Dzyubanenko S.V., Bakulin Ye.M. (2019) Razrabotka tonkoplenochnogo termoelektricheskogo generatora dlya malomoshnix primeneniy. MIKROELEKTRONIKA, tom 48, № 5, p. 379–388. DOI:10.1134/s0544126919040069
Peltier J.C. Ann A. (1834) Chemie Phys., V. 56, p.371-386.
Sorogin A.S., Xamitov R.N., Glazirin A.S. (2022) Model energoeffektivnoy solnechnoy paneli, rabotayushey pri povishennix temperaturax okrujayushey sredi. (2022) Elektrotexnicheskiye i informasionniye kompleksi i sistemi. №1, v.18. 77-88. DOI:10.17122/1999-5458-2022-18-1-77-87.
Seebeck T.I. Abhandi. Kȍnigl. Acad. Wiss. Berlin Kl 1825 (Jahren 1822-1823), p.265-373.
Babich A.V. (2021) Razrabotka effektivnix gibkix i plenochnix termoelektricheskix generatorov NIR: grant №21-79-03031. Rossiyskiy nauchniy fond.
kibor.ru https://kibor.ru>flexible-solar-panel
https://www.hisour.com/ru/thin-film-solar-cell-39519/.
Lukyanenko M.V., Kudryashov V.S. (2020), Energovoorujennost kosmicheskix apparatov i bortoviye istochniki elektroenergii. Vestnik SGAU. P.141-145.
Kazansev Z.A., Yeroshenko A.M., Babkina L.A. (2021) “Analiz konstruksiy solnechnix batarey kosmicheskix apparatov”. https://www.doi.10.26732/j.st.2021.3.01
Gromov G.G. (2014) Ob’yemniye ili tonkoplenochniye termoelektricheskiye moduli. Silovaya elektronika. p.108-113.
Francesco Zuddas Monfalcone. (2012) Thin Film Tubular Thermoelectric Generator, Create the Future. Italy.
Gorodeskiy C.M, Iordanishvili E.K., Kvyatkovskiy O.E., Kasimaxunova A.M. (1980) Metod mashinnogo rascheta K.P.D. termoelektricheskix batarey dlya fototermopreobrazovateley. «Fan», Geliotexnika, №2, p.4-7
Ioffe A.F. L. (1956) Poluprovodnikoviye termoelementi. Monografiya.
Lee K.H., Kim H.S., Kim S.I., Lee E.S., Lee S.M. (2012) Enhancement of Thermoelectric Figure of Merit for Bi0.5Sb1.5Te3 by Metal Nanoparticle Decoration. J. Electronic Materials. V.41. 1165–1169.
Blank V.D., Buga S.G., Kulbachinskii V.A., Kytin V.G., Medvedev V.V. Thermoelectric properties of Bi0.5Sb1.5Te3/C60 nanocomposites. Physical Review. B 86. 2012. 075426.
Nguyen P.K., Lee K.H., Moon J., Kim S.I., Ahn K.A. Spark erosion: a high production rate method for producing Bi0.5Sb1.5Te3 nanoparticles with enhanced thermoelectric performance // Nanotechnology. 2012. V.23. 415604.
Atajonov M.O. (2024) Development of technology for the development of highly efficient combinations of solar and thermoelectric generators. AIP Conf. Proc. 3045, 020011, https://doi.org/10.1063/5.0197733.
Atajonov M.O. (2024) Konstruksiya fototermoelektricheskix preobrazovateley. International journal of advanced research in education, technology and management. Vol. 2, Issue 12. p.236-2 44, https://doi.10.5281_zenodo.10315959.
Atajonov M.O. (2024) Nanokompozitniye plenki na osnove sistemi ZITO (ZnO In2 O3-SnO2): perspektivi termoelektricheskogo preobrazovaniya. Prospects For Thermoelectric Conversion. Research and implementation, 2(3), 152–157. https://doi.org/10.5281/zenodo.10775304
Atajonov M.O. Nimatov S.J., Rahmatullayev A.I. (2023) Formalization of the dynamics of the functioning of petrochemical complexes based on the theory of fuzzy sets and fuzzy logic. Computer and Systems Engineering |Conference paper| p.050014-1-050014-5. https://doi.10.1063/5.0112403
Yunusova S.T., Halmatov D.A., Atajonov M.O. Malaysia, (2020) Formalization of the Cotton Drying Process Based on Heat and Mass Transfer Equations. IIUM ENGINEERING JOURNAL. –Vol.21. № 2. p.256–265: https://doi.org/10.31436/iiumej.v21i2.1456.
Article Statistics
Copyright License
Copyright (c) 2025 Muhiddin Atajonov Odiljonovich

This work is licensed under a Creative Commons Attribution 4.0 International License.