Articles | Open Access | https://doi.org/10.37547/ajast/Volume05Issue07-04

Study of Modifier Influence on The Catalytic Conversion of Syngas into High-Molecular-Weight Hydrocarbons

Asliddin Mamatov Sayitmurodovich , Assistant, Department of Inorganic Chemistry and Materials Science, Samarkand State University named after Sharof Rashidov, Samarkand, 140101, Uzbekistan
Hayitali Ibodullayev Normurotovich , Student, Faculty of Chemistry, Samarkand State University named after Sharof Rashidov, Institute of Biochemistry, Samarkand, 140101, Uzbekistan
Normurot Fayzullaev Ibodullayevich , Doctor of Technical Sciences, Professor, Department of Polymer Chemistry and Chemical Technology, Samarkand State University named after Sharof Rashidov, Samarkand, 140101, Uzbekistan

Abstract

This study investigates the effect of sodium-based modifiers on the catalytic synthesis of high-molecular-weight liquid hydrocarbons from syngas (CO + H₂). Catalysts with the composition 20%Co–20%Fe–5%B–1.5%Zr–(0–2)%Na supported on Al₂O₃ and SiO₂ were synthesised using the incipient wetness impregnation method. Various sodium compounds (NaNO₃, NaCl, Na₂CO₃, and NaOH) were applied as modifiers. The catalysts were characterised using chromatographic, X-ray diffraction, and technological analysis methods to determine their phase composition, distribution of active sites, and reaction efficiency.

The study highlights the influence of support material nature and sodium loading on CO conversion, hydrocarbon productivity, and product selectivity. According to the analysis, Na modification significantly enhanced the activation of active centres and chain growth probability in Al₂O₃-based catalysts, while this effect was less pronounced for catalysts supported on SiO₂. Additionally, both the sodium source and the sequence of metal deposition on the carrier surface were found to play a critical role in determining overall catalyst performance and product distribution.

These findings confirm the potential of sodium-modified cobalt–iron–boron–zirconium catalysts in achieving high productivity and selectivity in Fischer–Tropsch-type hydrocarbon synthesis. The results provide practical insights for the design of advanced catalytic systems for efficient syngas conversion.

Keywords

Syngas, high-molecular-weight hydrocarbons, catalyst

References

S. Mehariya, A.K. Patel, P.K. Obulisamy, E. Punniyakotti, J.W.C. Wong, Codigestion of food waste and sewage sludge for methane production: current status and perspective, Bioresour. Technol. 265 (2018) 519531. 2.

O. Parthiba Karthikeyan, E. Trably, S. Mehariya, N. Bernet, J.W.C. Wong, H. Carrere, Pretreatment of food waste for methane and hydrogen recovery: a review, Bioresour. Technol. 249 (2018) 10251039.

A.S. Snehesh, H.S. Mukunda, S. Mahapatra, S. Dasappa, FischerTropsch route for the conversion of biomass to liquid fuels—technical and economic analysis, Energy 130 (2017) 182191.

W. Chen, T. Lin, Y. Dai, Y. An, F. Yu, L. Zhong, et al., Recent advances in the investigation of nanoeffects of Fischer-Tropsch catalysts, Catal. Today 311 (2018) 822.

N. Moazami, M.L. Wyszynski, K. Rahbar, A. Tsolakis, Parametric study and multiobjective optimization of fixed-bed FischerTropsch (FT) reactor: the improvement of FT synthesis product formation and synthetic conversion, Ind. Eng. Chem. Res. 56 (2017) 94469466.

M. Rafati, L. Wang, D.C. Dayton, K. Schimmel, V. Kabadi, A. Shahbazi, Technoeconomic analysis of production of Fischer-Tropsch liquids via biomass gasification: the effects of Fischer-Tropsch catalysts and natural gas co-feeding, Energy Convers. Manage. 133 (2017) 153166.

Y. Xue, H. Ge, Z. Chen, Y. Zhai, J. Zhang, J. Sun, et al., Effect of strain on the performance of iron-based catalyst in Fischer-Tropsch synthesis, J. Catal. 358 (2018) 237242.

H. Mahmoudi, M. Mahmoudi, O. Doustdar, H. Jahangiri, A. Tsolakis, S. Gu, et al., A review of Fischer Tropsch synthesis process, mechanism, surface chemistry and catalyst formulation, Biofuels Eng. 2 (2017) 1131. 240 Lignocellulosic Biomass to Liquid Biofuels

A. Chiodini, L. Bua, L. Carnelli, R. Zwart, B. Vreugdenhil, M. Vocciante, Enhancements in biomass-to-liquid processes: gasification aiming at high hydrogen/ carbon monoxide ratios for direct Fischer-Tropsch synthesis applications, Biomass Bioenergy 106 (2017) 104114.

Y. Xu, D. Liu, X. Liu, Conversion of syngas toward aromatics over hybrid Fe-based Fischer-Tropsch catalysts and HZSM-5 zeolites, Appl. Catal., A: Gen. 552 (2018) 168183.

E. Garcia-Bordeje, Y. Liu, D.S. Su, C. Pham-Huu, Hierarchically structured reactors containing nanocarbons for intensification of chemical reactions, J. Mater. Chem. A 5 (2017) 2240822441.

M.G.A. Cruz, A.P.S. de Oliveira, F.A.N. Fernandes, F.F. de Sousa, A.C. Oliveira, J. M. Filho, et al., Fe-containing carbon obtained from ferrocene: influence of the preparation procedure on the catalytic performance in FTS reaction, Chem. Eng. J. 317 (2017) 143156.

M.G.A. Cruz, F.A.N. Fernandes, A.C. Oliveira, J.M. Filho, A.C. Oliveira, A.F. Campos, et al., Effect of the calcination temperatures of the Fe-based catalysts supported on polystyrene mesoporous carbon for FTS synthesis, Catal. Today 282 (2017) 174184.

X. Wei, H. Wang, Z. Yin, S. Qaseem, J. Li, Tubular electrocatalytic membrane reactor for alcohol oxidation: CFD simulation and experiment, Chin. J. Chem. Eng. 25 (2017) 1825.

V.S. Ermolaev, K.O. Gryaznov, E.B. Mitberg, V.Z. Mordkovich, V.F. Tretyakov, Laboratory and pilot plant fixed-bed reactors for FischerTropsch synthesis: mathematical modeling and experimental investigation, Chem. Eng. Sci. 138 (2015)

Y. Sun, J. Wei, J.P. Zhang, G. Yang, Optimization using response surface methodology and kinetic study of FischerTropsch synthesis using SiO2 supported bimetallic CoNi catalyst, J. Nat. Gas Sci. Eng. 28 (2016) 173183.

N. Moazami, M.L. Wyszynski, K. Rahbar, A. Tsolakis, H. Mahmoudi, A comprehensive study of kinetics mechanism of Fischer-Tropsch synthesis over cobalt-based catalyst, Chem. Eng. Sci. 171 (2017) 3260.

V. Vosoughi, S. Badoga, A.K. Dalai, N. Abatzoglou, Modification of mesoporous alumina as a support for cobalt-based catalyst in Fischer-Tropsch synthesis, Fuel Process. Technol. 162 (2017) 5565.

Savost’yanov, R.E. Yakovenko, S.I. Sulima, V.G. Bakun, G.B. Narochnyi, V. M. Chernyshev, et al., The impact of Al2O3 promoter on an efficiency of C5 hydrocarbons formation over Co/SiO2 catalysts via Fischer-Tropsch synthesis, Catal. Today 279 (2017) 107114

Li, Z.L.; Wang, J.J.; Qu, Y.Z.; Liu, H.L.; Tang, C.Z.; Miao, S.; Feng, Z.C.; An, H.Y.; Li, C. Highly selective conversion of carbon dioxide to lower olefins. ACS Catal. 2017, 12, 8544–8548. [CrossRef]

Guo, L.S.; Sun, J.; Ji, X.W.; Wei, J.; Wen, Z.Y.; Yao, R.W.; Xu, H.Y.; Ge, Q.J. Directly converting carbon dioxide to linear α-olefins on bio-promoted catalysts. Commun. Chem. 2018, 1, 11. [CrossRef]

Lu, P.F.; Liang, J.; Wang, K.Z.; Liu, B.; Atchimarungsri, T.; Wang, Y.; Zhang, X.J.; Tian, J.M.; Jiang, Y.J.; Liu, Z.H.; et al. Boosting liquid hydrocarbons synthesis from CO2 hydrogenation via tailoring acid properties of HZSM-5 zeolite. Ind. Eng. Chem. Res. 2022, 61, 16393–16401. [CrossRef]

Jiang, B.; Xia, D.; Yu, B.; Xiong, R.; Ao, W.; Zhang, P.; Cong, L. An environment-friendly process for limestone calcination with CO2 looping and recovery. J. Clean. Prod. 2019, 240, 118147.

Numpilat, T.; Chanlek, N.; Poo-arporn, Y.; Cheng, C.K.; Siri-Nguan, N.; Sornchamni, T.; Witoon, T. Tuning interactions of surface-adsorbed species over Fe-Co/K-Al2O3 catalyst by different K contents: Selective CO2 hydrogenation to light olefins. ChemCatChem 2020, 12, 3306–3320.

Guo, L.S.; Sun, J.; Wei, J.; Wen, Z.Y.; Xu, H.Y.; Ge, Q.J. Fischer–Tropsch synthesis over iron catalysts with corncob-derived promoters. J. Energy Chem. 2017, 26, 632–638. [CrossRef]

Gao, X.H.; Zhang, J.L.; Chen, N.; Ma, Q.X.; Fan, S.B.; Zhao, T.S.; Tsubaki, N. Effects of zinc on Fe-based catalysts during the synthesis of light olefins from the Fischer-Tropsch process. Chin. J. Catal. 2016, 37, 510–516

Gnanamani, M.K.; Jacobs, G.; Shafer, W.D.; Martinelli, M.; Cronauer, D.C.; Kropf, A.J.; Marshall, C.L.; Davis, B.H. Ga and In modified ceria as supports for cobalt-catalyzed Fischer-Tropsch synthesis. Appl. Catal. A 2017, 547, 115–123.

Chen, F.; Zhang, P.P.; Xiao, L.W.; Liang, J.M.; Zhang, B.Z.; Zhao, H.; Kosol, R.; Ma, Q.X.; Chen, J.N.; Peng, X.B.; et al. StructurePerformance correlations over Cu/ZnO interface for low-temperature methanol synthesis from syngas containing CO2 . ACS Appl. Mater. Interfaces 2021, 13, 8191–8205.

Z. Kong, X. Dong and Q. Jiang, The net energy impact of substituting imported oil with coal-to-liquid in China, J. Cleaner Prod., 2018, 198, 80–90.

G. Iaquaniello, G. Centi, A. Salladini, E. Palo and S. Perathoner, Waste to Chemicals for a Circular Economy, Chem. – Eur. J., 2018, 24, 11831–11839. 7 K. Cheng, et al., Advances in Catalysis for Syngas Conversion to Hydrocarbons. Advances in Catalysis, Elsevier Inc., 2017, vol. 60.

J. Bao, G. Yang, Y. Yoneyama and N. Tsubaki, Significant advances in C1 catalysis: highly efficient catalysts and catalytic reactions, ACS Catal., 2019, 9, 3026–3053.

Tregambi, et al., Techno-economic assessment of a synthetic methane production process by hydrogenation of carbon dioxide from direct air capture, Int. J. Hydrogen Energy, 2023, 48, 37594–37606.

B. Elvers and A. Schutze, Handbook of Fuels, Energy Sources for Transportation, 2021. 26 S. Chemicals, Product Stewardship Summaries, 2017.

A. Corma, et al., Crude oil to chemicals: Light olefins from crude oil, Catal. Sci. Technol., 2017, 7, 12–46. 28 Y. Gao, et al., Recent Advances in Intensified Ethylene Production - A Review, ACS Catal., 2019, 9, 8592–8621.

U. S. E. I. Administration, Monthly Energy Review: January 2022, 2022.

A. Meurer and J. Kern, Fischer–Tropsch Synthesis as the Key for Decentralized Sustainable Kerosene Production, Energies, 2021, 14, 1836.

Z. Wang, et al., Hierarchical ZSM-5 Supported CoMn Catalyst for the Production of Middle Distillate from Syngas, Ind. Eng. Chem. Res., 2021, 60, 5783–5791.

B. Mazonde, et al., A solvent-free: In situ synthesis of a hierarchical Co-based zeolite catalyst and its application to tuning Fischer-Tropsch product selectivity, Catal. Sci. Technol., 2018, 8, 2802–2808.

B. P. Vempatapu and P. K. Kanaujia, Monitoring petroleum fuel adulteration: A review of analytical methods, TrAC, Trends Anal. Chem., 2017, 92, 1–11.

P. Sikarwar, V. Gosu and V. Subbaramaiah, An overview of conventional and alternative technologies for the production of ultra-low-sulfur fuels, Rev. Chem. Eng., 2019, 35, 669–705.

Article Statistics

Copyright License

Download Citations

How to Cite

Asliddin Mamatov Sayitmurodovich, Hayitali Ibodullayev Normurotovich, & Normurot Fayzullaev Ibodullayevich. (2025). Study of Modifier Influence on The Catalytic Conversion of Syngas into High-Molecular-Weight Hydrocarbons. American Journal of Applied Science and Technology, 5(07), 18–30. https://doi.org/10.37547/ajast/Volume05Issue07-04