
Transgenic Mice Have Proven Successful in Combating Neurogenerative Diseases
Abstract
A study investigating the role of cathepsin D (CTSD) in neuroprotection has provided compelling evidence of its critical importance in preventing neurodegenerative processes.
The central idea of the work is that overexpression of CTSD can compensate for the deficiency of this enzyme caused by genetic knockout, thereby preventing the development of lethal consequences and the accumulation of amyloid plaques characteristic of neurodegenerative diseases such as Alzheimer's disease.
Lysosomes, intracellular organelles, play a key role in the degradation of proteins and other cellular components, thereby ensuring cellular homeostasis. Cathepsins, including CTSD, are the most important lysosomal proteases responsible for the breakdown of various substrates, including toxic protein aggregates. CTSD deficiency in humans leads to the development of neurolipofuscinosis (NCL), a group of severe inherited neurodegenerative diseases characterized by the accumulation of lipofuscin in nerve cells and progressive neuronal damage. This disease demonstrates a direct link between lysosomal protease deficiency and the development of neurodegeneration.
Keywords
Transgenic mouse, Cathepsin D, Mitochondrial bioenergetics
References
Z. Gan-Or, PA Dion, GA Rouleau
Genetic Perspective on the Role of the Autophagy -Lysosome Pathway in Parkinson's Disease Autophagy , 11 (2015), pp. 1443-1457 View at publisher
CrossrefView in ScopusGoogle Scholar
J. Zhang , M. L. Culp , J. G. Craver , V. Darley - Usmar Mitochondrial function and autophagy : integration of proteotoxic , redox , and metabolic stress in Parkinson's disease J Neurochem , 144 ( 2018 ), pp . 691–709 View at publisher CrossrefView at ScopusGoogle Scholar
D . J . Colacurcio , A . Pensalfini , Y . Jiang , R . A . Nixon Dysfunction of autophagy and endosomal -lysosomal pathways: role in the pathogenesis of Down syndrome and Alzheimer's disease Free Radical Biol Med , 114 (2018), pp. 40-51 View PDF View ArticleView in ScopusGoogle Scholar
RA Nixon The role of autophagy in neurodegenerative diseases Nat Med , 19 (2013), pp. 983–997 View at publisher Crossref View at ScopusGoogle Scholar
L. Schneider , J. Zhang Lysosomal function in macromolecular homeostasis and bioenergetics in Parkinson 's disease Mol Neurodegener , 5 (2010), p. 14 View at publisher CrossrefView at ScopusGoogle Scholar
E. Siintola , S. Partanen, P. Stromme , A. Haapanen , M. Haltia , J. Maehlen And etc.
Cathepsin D deficiency underlies human congenital neuronal ceroid lipofuscinosis Brain , 129 (2006), pp. 1438–1445 View at publisher CrossrefView at ScopusGoogle Scholar
R. Steinfeld, K. Reinhardt, K. Schreiber, M. Hillebrand, R. Kraetzner , W. Bruck and dr . Cathepsin D deficiency linked to human neurodegenerative disorder Am J Hum Genet , 78 (2006), pp. 988–998 View PDF View ArticleCrossrefView in ScopusGoogle Scholar
Y. D. H. Chu , P. Aebischer , C. W. Olanow , J. H. Kordower Alterations in lysosomal and proteasomal markers in Parkinson 's disease : association with alpha - synuclein inclusions Neurobiol Dis , 35 (2009), pp. 385-398 View PDF View ArticleView in ScopusGoogle Scholar
B. Dehay , J. Bove, N. Rodriguez- Muela , C. Perier , A. Recasens , P. Boya and etc.
Pathogenic lysosomal depletion in Parkinson's disease J Neurosci , 30 (2010), pp. 12535–12544 View in ScopusGoogle Scholar
W. Peng , G. Minakaki , M. Nguyen , D. Krainc Preservation of lysosomal function in the aging brain: insights from neurodegeneration Neurotherapeutics , 16 (2019 ) , pp . 611–634 View PDF View articleCrossrefView in ScopusGoogle Scholar
M. Usenovic , E. Tresse , J. R. Mazzulli , J. P. Taylor , D. Krainc ATP13A2 deficiency results in lysosomal dysfunction, alpha - synuclein accumulation , and neurotoxicity J Neurosci , 32 (2012), pp. 4240–4246 View at ScopusGoogle Scholar
P. Saftig , M. Hetman, W. Schmahl , K. Weber, L. Heine, H. Mossmann And etc.
Mice deficient in the lysosomal proteinase cathepsin D exhibit progressive atrophy of the intestinal mucosa and profound destruction of lymphoid cells EMBO J, 14 (1995), pp. 3599–3608 View at publisherCrossrefView at ScopusGoogle Scholar
H. Nakanishi, J. Zhang, M. Koike, T. Nishioku , Y. Okamoto, E. Kominami And dr . Involvement of nitric oxide released from microglia -macrophages in pathological changes in cathepsin-deficient mice DJ Neurosci , 21 (2001), pp. 7526–7533 View at publisherCrossrefView at ScopusGoogle Scholar
M. Koike, M. Shibata, S. Waguri , K. Yoshimura, I. Tanida, E. Kominami And etc.
Involvement of autophagy in lysosome storage in neurons from mouse models of neuronal ceroid lipofuscinosis ( Batten disease ) Am J Pathol , 167 (2005), pp. 1713–1728 View PDF View Article View in ScopusGoogle Scholar
L. Qiao , S. Hamamichi , K. A. Caldwell, G. A. Caldwell, T. A. Yacoubian, S. Wilson and dr . Lysosomal enzyme cathepsin D protects against alpha-synuclein aggregation and toxicity Mol Brain, 1 (2008), p. 17 View in ScopusGoogle Scholar
V. Cullen, M. Lindfors , J. Ng, A. Paetau , E. Swinton, P. Kolodziej And etc. Cathepsin D expression level influences alpha-synuclein processing, aggregation and toxicity in vivo Mol Brain , 2 (2009), p. 5 View in ScopusGoogle Scholar
C. N. Suire , S. O. Abdul - Hay , T. Sahara , D. Kang , M. K. Brizuela , P. Saftig , et al. Cathepsin D regulates cerebral Abeta42 / 40 ratios through differential degradation of Abeta42 and Abeta40 in Alzheimer 's disease Res Ther , 12 (2020), p. 80 View in ScopusGoogle Scholar
C. N. Suire , M. A. Leissring Cathepsin D: A Potential Link Between Amyloid Beta Protein and Tauopathy in Alzheimer's Disease J Exp Neurol , 2 (2021), pp. 10-15 Google Scholar
Article Statistics
Copyright License
Copyright (c) 2025 Sultonova Dildor Bakhshilloyevna

This work is licensed under a Creative Commons Attribution 4.0 International License.