Articles | Open Access | https://doi.org/10.37547/ajast/Volume05Issue06-10

Characteristics And Research Approaches To Plant Microbiomes In The Ecological Conditions Of The Kyzylkum Desert

B.Toshbadalov , Institute of Fundamental and Applied Research, National Research University, Tashkent, Uzbekistan

Abstract

The Kyzylkum Desert represents a unique and extreme ecosystem where plants depend critically on their associated microbiomes for survival and adaptation. This review explores the intricate composition, dynamic interactions, and functional roles of plant microbiomes in such harsh environments, emphasizing their ecological importance and potential applications. Despite significant progress in microbiome research, major gaps remain in understanding the specific mechanisms that enable these microbial communities to thrive under extreme abiotic stressors like high salinity, nutrient deficiency, and drought. Advanced molecular approaches, including metagenomics and 16S rRNA sequencing, are highlighted as indispensable tools for unraveling microbial diversity and functionality in desert ecosystems.

Key findings reveal the vital roles of microbial communities—bacteria, fungi, actinomycetes, and archaea—in enhancing nutrient acquisition, improving drought resilience, and mitigating oxidative stress in desert plants. Notably, symbiotic associations such as nitrogen-fixing bacteria, phosphate-solubilizing fungi, and arbuscular mycorrhizal fungi are crucial in facilitating plant survival in the nutrient-poor soils of the Kyzylkum Desert. Furthermore, this review underscores the unique adaptive traits of desert microbiomes, including stress-response proteins, exopolysaccharide production, and osmoprotectants, which collectively sustain plant-microbe interactions under challenging conditions.

This review integrates findings from local and international research to bridge critical knowledge gaps and underscores the potential of desert microbiomes for sustainable applications, including bioinoculants, soil health enhancement, and desertification mitigation. These insights pave the way for innovative strategies to harness microbial communities in addressing global challenges in agriculture and ecosystem restoration.

 

Keywords

Kyzylkum Desert, plant microbiome,, microbial diversity

References

Vessey, J.K. Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil 2003, 255, 571–586. [CrossRef]

Bashan, Y.; Holguin, G.; de-Bashan, L.E. Azospirillum-plant relationships: Physiological, molecular, agricultural, and environmental advances. Can. J. Microbiol. 2004, 50, 521–577. [CrossRef]

Khan, M.S.; Zaidi, A.; Wani, P.A. Role of phosphate-solubilizing microorganisms in sustainable agriculture: A review. Agron. Sustain. Dev. 2010, 30, 31–44. [CrossRef]

Mora-Ruiz, M.R.; Font-Verdera, F.; Pérez, J.A.; Mulet, M. Bacterial diversity in soils. Environ. Microbiol. 2016, 18, 3043–3055. [CrossRef]

Ruppel, S.; Franken, P.; Witzel, K. Properties and applications of halotolerant microorganisms. Plant and Soil 2013, 364, 1–15. [CrossRef]

Oren, A. Thermodynamic limits to microbial life at high salt concentrations. Environ. Microbiol. 2011, 13, 1908–1923. [CrossRef]

Egamberdieva, D.; Wirth, S.J.; Behrendt, U.; Berg, G. Antimicrobial activity of medicinal plants correlates with endophytic bacteria. Plant and Soil 2015, 398, 217–227. [CrossRef]

Singh, B.K.; Bardgett, R.D.; Smith, P.; Reay, D.S. Microorganisms and climate change. Nat. Rev. Microbiol. 2010, 8, 779–790. [CrossRef]

Sathya, A.; Vijayabharathi, R.; Gopalakrishnan, S.; Srinivas, V. Actinomycetes: Plant growth-promoting activities. Springer Nat. Microbiol. 2017, 5, 103–115.

Gonzalez, C.F.; Marketon, M.M. Plant-microbe interactions. Mol. Plant-Microbe Interact. 2018, 31, 215–224. [CrossRef]

Hartmann, A.; Schmid, M.; van Tuinen, D.; Berg, G. Plant-driven selection of microbes. Plant and Soil 2014, 321, 235–257. [CrossRef]

Bashan, Y.; de-Bashan, L.E. Bacteria-plant relationships. Springer-Verlag Microbiol. Ser. 2005, 8, 89–115.

Ma, Y.; Oliveira, R.S.; Freitas, H.; Zhang, C. Biochemical mechanisms of plant-microbe-salt interactions. Plant and Soil 2019, 449, 1–22. [CrossRef]

Singh, J.S.; Gupta, V.K.; Kashyap, A.K. Desertification in India. Environ. Conserv. 2012, 39, 311–325. [CrossRef]

López, M.J.; Vargas-García, M.C.; Suárez-Estrella, F.; Moreno, J. Compost microbial communities. Springer Int. Microbiol. Ser. 2016, 4, 205–218.

Zhang, J.; Wang, H.; He, M.; Chen, M.; Zhao, Z. Microbial interactions with saline soil. J. Microbiol. 2018, 56, 579–588. [CrossRef]

Friesen, M.L.; Porter, S.S.; Stark, S.C.; Von Wettberg, E.J.; Sachs, J.L.; Martinez-Romero, E. Microbial symbioses in agriculture: Diversity, benefits, and challenges. Nat. Rev. Microbiol. 2011, 9, 25–35. [CrossRef]

Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis; Academic Press: London, UK, 2008; 800p.

Bever, J.D.; Platt, T.G.; Morton, E.R. Microbial dynamics in the rhizosphere. Annu. Rev. Microbiol. 2012, 66, 265–283. [CrossRef]

Zhu, Y.G.; Johnson, T.A.; Su, J.Q.; Qiao, M.; Guo, G.X.; Stedtfeld, R.D.; Hashsham, S.A.; Tiedje, J.M. Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc. Natl. Acad. Sci. USA 2013, 110, 3435–3440. [CrossRef]

Delgado-Baquerizo, M.; Maestre, F.T.; Gallardo, A.; Bowker, M.A.; Wallenstein, M.D.; Quero, J.L.; Soliveres, S.; Escolar, C.; García-Palacios, P.; Berdugo, M. Aridity modulates N availability in arid ecosystems. Ecology 2013, 94, 1407–1419. [CrossRef]

Berendsen, R.L.; Pieterse, C.M.J.; Bakker, P.A.H.M. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012, 17, 478–486. [CrossRef]

Schlaeppi, K.; Bulgarelli, D. The plant microbiome at work. Mol. Plant-Microbe Interact. 2015, 28, 212–217. [CrossRef]

Walters, W.A.; Jin, Z.; Youngblut, N.; Wallace, J.G.; Sutter, J.; Zhang, W.; Gonzalez-Pena, A.; Peiffer, J.; Koren, O.; Shi, Q. Large-scale replicated field study of maize rhizosphere identifies heritable microbes. Proc. Natl. Acad. Sci. USA 2018, 115, 7368–7373. [CrossRef]

Mendes, R.; Garbeva, P.; Raaijmakers, J.M. The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 2013, 37, 634–663. [CrossRef]

Bragina, A.; Berg, C.; Berg, G. The core microbiome bonds the Alpine bog vegetation to a continuum of plant-microbe interactions. Microb. Ecol. 2015, 70, 428–440. [CrossRef]

Lugtenberg, B.J.J.; Caradus, J.R.; Johnson, L.J. Fungal endophytes for sustainable crop production. FEMS Microbiol. Ecol. 2016, 92, 1–17. [CrossRef]

Hardoim, P.R.; van Overbeek, L.S.; van Elsas, J.D. Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol. 2008, 16, 463–471. [CrossRef]

Kuzyakov, Y.; Razavi, B.S. Rhizosphere size and shape: Temporal dynamics and spatial stationarity. Soil Biol. Biochem. 2019, 135, 343–360. [CrossRef]

Philippot, L.; Raaijmakers, J.M.; Lemanceau, P.; van der Putten, W.H. Going back to the roots: The microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 2013, 11, 789–799. [CrossRef]

Richardson, A.E.; Simpson, R.J. Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiol. 2011, 156, 989–996. [CrossRef]

Verbon, E.H.; Liberman, L.M. Beneficial microbes: Plant development and interspecies communication. Curr. Opin. Plant Biol. 2016, 34, 45–49. [CrossRef]

Lugtenberg, B.; Kamilova, F. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 2009, 63, 541–556. [CrossRef]

Fierer, N.; Jackson, R.B. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA 2006, 103, 626–631. [CrossRef]

Bulgarelli, D.; Schlaeppi, K.; Spaepen, S.; van Themaat, E.V.; Schulze-Lefert, P. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 2013, 64, 807–838. [CrossRef]

Chen, M.; Zhang, W.; Wu, X.; Guo, X.; He, X. Soil microbial community and functional diversity in saline-alkali land. Appl. Soil Ecol. 2019, 135, 34–42. [CrossRef]

Guo, Q.; Han, J.; Li, Q.; Chen, Y.; Wang, Y. Advances in phosphate solubilizing microorganisms for improving phosphorus availability in soil. J. Integr. Agric. 2020, 19, 367–378. [CrossRef]

Richardson, A.E.; Barea, J.M.; McNeill, A.M.; Prigent-Combaret, C. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 2009, 321, 305–339. [CrossRef]

Mukherjee, A.; Singh, B.K.; Gour, J.P.; Adhya, T.K. Rhizosphere microbial community in saline soils. Curr. Opin. Environ. Sustain. 2019, 39, 24–30. [CrossRef]

Jacoby, R.; Peukert, M.; Succurro, A.; Koprivova, A.; Kopriva, S. The role of soil microorganisms in plant mineral nutrition—Current knowledge and future directions. Front. Plant Sci. 2017, 8, 1617. [CrossRef]

Leff, J.W.; Lynch, R.C.; Kane, N.C.; Fierer, N. Plant domestication and the assembly of bacterial and fungal communities associated with crops. New Phytol. 2017, 214, 412–423. [CrossRef]

Mendes, R.; Kruijt, M.; de Bruijn, I.; Dekkers, E.; van der Voort, M.; Schneider, J.H.; Bakker, P.A. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 2011, 332, 1097–1100. [CrossRef]

Bakker, P.A.; Pieterse, C.M.; de Jonge, R.; Berendsen, R.L. The soil-borne legacy. Cell 2018, 172, 1178–1180. [CrossRef]

Cole, J.R.; Wang, Q.; Fish, J.A.; Chai, B.; McGarrell, D.M.; Sun, Y.; Tiedje, J.M. Ribosomal Database Project: Data and tools for high throughput rRNA analysis. Nucleic Acids Res. 2014, 42, D633–D642. [CrossRef]

Santi, C.; Bogusz, D.; Franche, C. Biological nitrogen fixation in non-legume plants. Ann. Bot. 2013, 111, 743–767. [CrossRef]

Diagne, N.; Arumugam, K.; Ngom, M.; Dramé, K.N.; Djighaly, P.I.; Ndour, A.; Laplaze, L. Use of arbuscular mycorrhizal fungi in agriculture. Front. Plant Sci. 2020, 11, 1110. [CrossRef]

Yadav, R.; Singh, M.; Verma, J.P. Plant growth-promoting microbial consortia for sustainable agriculture. Plant Soil Environ. 2020, 66, 1–13. [CrossRef]

Peixoto, R.S.; Vermelho, A.B.; Rosado, A.S. Petroleum-degrading enzymes: Bioremediation and new prospects. Enzyme Res. 2011, 2011, 475193. [CrossRef]

Bhattacharyya, P.N.; Jha, D.K. Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World J. Microbiol. Biotechnol. 2012, 28, 1327–1350. [CrossRef]

Parnell, J.J.; Berka, R.; Young, H.A.; Sturino, J.M.; Kang, Y.; Barnhart, D.M.; DiLeo, M.V. From the lab to the farm: An industrial perspective of plant beneficial microorganisms. Front. Plant Sci. 2016, 7, 1110. [CrossRef]

Quiza, L.; St-Arnaud, M.; Yergeau, E. Harnessing phytomicrobiome signaling for rhizosphere microbiome engineering. Front. Plant Sci. 2015, 6, 507. [CrossRef]

Van Oosten, M.J.; Pepe, O.; De Pascale, S.; Silletti, S.; Maggio, A. The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chem. Biol. Technol. Agric. 2017, 4, 5. [CrossRef]

Rey, T.; Dumas, B. Plenty is no plague: Pathogen-associated molecular patterns (PAMPs) in plant defense. Trends Plant Sci. 2017, 22, 904–916. [CrossRef]

Compant, S.; Clément, C.; Sessitsch, A. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role in plant health. FEMS Microbiol. Ecol. 2010, 34, 613–629. [CrossRef]

Newton, A.C.; Gravouil, C.; Fountaine, J.M. Managing the ecology of foliar pathogens: Ecological tolerance in crops. Ann. Appl. Biol. 2010, 157, 343–359. [CrossRef]

Dastogeer, K.M.; Tumpa, F.H.; Sultana, A.; Akter, M.A.; Chakraborty, A. Plant microbiome–an account of the factors that shape community composition and diversity. Curr. Plant Biol. 2020, 23, 100161. [CrossRef]

Yu, K.; Pieterse, C.M.; Bakker, P.A.; Berendsen, R.L. Beneficial microbes going underground of root immunity. Plant Cell Environ. 2019, 42, 2860–2870. [CrossRef]

Panke-Buisse, K.; Poole, A.C.; Goodrich, J.K.; Ley, R.E.; Kao-Kniffin, J. Selection on soil microbiomes reveals reproducible impacts on plant function. ISME J. 2015, 9, 980–989. [CrossRef]

Winston, M.E.; Hampton-Marcell, J.; Zarraonaindia, I.; Owens, S.M.; Moreau, C.S.; Gilbert, J.A.; Hartsel, J. Understanding microbial community dynamics to improve sustainable land management. PLoS ONE 2014, 9, e105509. [CrossRef]

Trivedi, P.; Leach, J.E.; Tringe, S.G.; Sa, T.; Singh, B.K. Plant–microbiome interactions: From community assembly to plant health. Nat. Rev. Microbiol. 2020, 18, 607–621. [CrossRef]

Callahan, B.J.; McMurdie, P.J.; Holmes, S.P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017, 11, 2639–2643. [CrossRef]

Adams, R.I.; Miletto, M.; Taylor, J.W.; Bruns, T.D. The diversity and distribution of fungi on residential surfaces. PLoS ONE 2013, 8, e78866. [CrossRef]

Bulgarelli, D.; Garrido-Oter, R.; Munch, P.C.; Weiman, A.; Dröge, J.; Pan, Y.; Schulze-Lefert, P. Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 2015, 17, 392–403. [CrossRef]

Oyserman, B.O.; Medema, M.H.; Raaijmakers, J.M. Roadmap to engineered bacterial plant microbiomes for sustainable agriculture. Trends Microbiol. 2018, 26, 952–963. [CrossRef]

Naylor, D.; DeGraaf, S.; Purdom, E.; Coleman-Derr, D. Drought and host selection influence bacterial community dynamics in the grass root microbiome. ISME J. 2017, 11, 2691–2704. [CrossRef]

Edwards, J.; Johnson, C.; Santos-Medellín, C.; Lurie, E.; Podishetty, N.K.; Bhatnagar, S.; Eisen, J.A. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc. Natl. Acad. Sci. USA 2015, 112, E911–E920. [CrossRef]

Zhalnina, K.; Louie, K.B.; Hao, Z.; Mansoori, N.; da Rocha, U.N.; Shi, S.; Brodie, E.L. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat. Microbiol. 2018, 3, 470–480. [CrossRef]

Fierer, N.; Breitbart, M.; Nulton, J.; Salamon, P.; Lozupone, C.; Jones, R.; Rohwer, F. Metagenomic and small-subunit rRNA analyses reveal the genetic diversity of bacteria, archaea, fungi, and viruses in soil. Appl. Environ. Microbiol. 2007, 73, 7059–7066. [CrossRef]

Mendes, R.; Pizzirani-Kleiner, A.A.; Araujo, W.L.; Raaijmakers, J.M. Diversity of cultivated endophytic bacteria from sugarcane: Genetic and biochemical characterization of Burkholderia cepacia complex isolates. Appl. Environ. Microbiol. 2007, 73, 7259–7267. [CrossRef]

Vorholt, J.A. Microbial life in the phyllosphere. Nat. Rev. Microbiol. 2012, 10, 828–840. [CrossRef]

Bulgarelli, D.; Rott, M.; Schlaeppi, K.; Ver Loren van Themaat, E.; Ahmadinejad, N.; Assenza, F.; Schulze-Lefert, P. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 2012, 488, 91–95. [CrossRef]

Cheng, Z.; Park, E.; Glick, B.R. Role of plant growth-promoting rhizobacteria in sustainable agriculture and bioremediation. Clim. Chang. 2007, 45, 273–291. [CrossRef]

Schulz, B.; Boyle, C.; Draeger, S.; Römmert, A.K.; Krohn, K. Endophytic fungi: A source of novel biologically active secondary metabolites. Mycol. Res. 2002, 106, 996–1004. [CrossRef]

Koskella, B.; Hall, L.J.; Metcalf, C.J.E. The microbiome beyond the horizon of ecological and evolutionary theory. Nat. Ecol. Evol. 2017, 1, 1606–1615. [CrossRef]

Shade, A.; Jacques, M.A.; Barret, M. Ecological patterns of seed microbiome diversity, transmission, and assembly. Curr. Opin. Microbiol. 2017, 37, 15–22. [CrossRef]

Tkacz, A.; Cheema, J.; Chandra, G.; Grant, A.; Poole, P.S. Stability and succession of the rhizosphere microbiota depends upon plant type and soil composition. ISME J. 2015, 9, 2349–2359. [CrossRef]

Hartman, K.; van der Heijden, M.G.A.; Roussely-Provent, V.; Walser, J.-C.; Schlaeppi, K. Deciphering composition and function of the root microbiome of a legume plant. Microbiome 2017, 5, 2. [CrossRef]

Martiny, J.B.; Bohannan, B.J.; Brown, J.H.; Colwell, R.K.; Fuhrman, J.A.; Green, J.L.; Staley, J.T. Microbial biogeography: Putting microorganisms on the map. Nat. Rev. Microbiol. 2006, 4, 102–112. [CrossRef]

Van Der Heijden, M.G.; Bruin, S.; de Meijer, F.A.; Fry, G.J. Arbuscular mycorrhizal fungi and Rhizobium bacteria synergistically enhance nitrogen and phosphorus acquisition of legumes. Plant Soil 2003, 258, 151–159. [CrossRef]

Ramírez-Puebla, S.T.; Servín-Garcidueñas, L.E.; Jiménez-Marín, B.; Bolaños, L.M.; Rosenblueth, M.; Martínez-Romero, E. The phyllosphere: Microbial jungle at the plant–climate interface. Front. Microbiol. 2020, 10, 2154. [CrossRef]

Niu, B.; Paulson, J.N.; Zheng, X.; Kolter, R. Simplified and representative bacterial community of maize roots. Proc. Natl. Acad. Sci. USA 2017, 114, E2450–E2459. [CrossRef]

Hu, L.; Robert, C.A.; Cadot, S.; Zhang, X.; Ye, M.; Li, B.; Rasmann, S. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nat. Commun. 2018, 9, 2738. [CrossRef]

Levy, A.; Salas-González, I.; Mittelviefhaus, M.; Clingenpeel, S.; Malfatti, S.; Tringe, S.G.; Dangl, J.L. Genomic features of bacterial adaptation to plants. Nat. Genet. 2018, 50, 138–150. [CrossRef]

Haichar, F.E.; Santaella, C.; Heulin, T.; Achouak, W. Root exudates mediated interactions belowground. Soil Biol. Biochem. 2014, 77, 69–80. [CrossRef]

Badri, D.V.; Vivanco, J.M. Regulation and function of root exudates. Plant Cell Environ. 2009, 32, 666–681. [CrossRef]

Gopal, M.; Gupta, A.; Pal, R.K. Applications of plant growth-promoting microorganisms in the mitigation of abiotic stress in plants. Front. Plant Sci. 2020, 11, 2016. [CrossRef]

Zamioudis, C.; Pieterse, C.M.J. Modulation of host immunity by beneficial microbes. Mol. Plant-Microbe Interact. 2012, 25, 139–150. [CrossRef]

Mendes, R.; Raaijmakers, J.M. Impact of bacterial and fungal volatiles on plant health. Trends Plant Sci. 2015, 20, 206–211. [CrossRef]

Hacquard, S.; Garrido-Oter, R.; González, A.; Spaepen, S.; Ackermann, G.; Lebeis, S.L.; Schulze-Lefert, P. Microbial community composition and functional diversity in the phyllosphere and rhizosphere of Arabidopsis thaliana. Nat. Commun. 2015, 6, 4323. [CrossRef]

Peiffer, J.A.; Spor, A.; Koren, O.; Jin, Z.; Tringe, S.G.; Dangl, J.L.; Ley, R.E. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc. Natl. Acad. Sci. USA 2013, 110, 6548–6553. [CrossRef]

Vandenkoornhuyse, P.; Quaiser, A.; Duhamel, M.; Le Van, A.; Dufresne, A. The importance of the microbiome of the plant holobiont. New Phytol. 2015, 206, 1196–1206. [CrossRef]

Berg, G.; Smalla, K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol. Ecol. 2009, 68, 1–13. [CrossRef]

Deveau, A.; Bonito, G.; Uehling, J.; Paoletti, M.; Becker, M.; Bindschedler, S.; Martin, F. Bacterial-fungal interactions: Ecology, mechanisms, and challenges. Fungal Biol. Rev. 2018, 32, 62–77. [CrossRef]

Pérez-Jaramillo, J.E.; Carrión, V.J.; de Hollander, M.; Raaijmakers, J.M. The wild side of plant microbiomes. Microbiome 2018, 6, 143. [CrossRef]

Haichar, F.E.; Achouak, W.; Christen, R.; Heulin, T.; Marol, C.; Marais, M.F.; Berge, O. Stable isotope probing analysis of the diversity and activity of methanol-utilizing bacteria in the rhizosphere. ISME J. 2007, 1, 464–478. [CrossRef]

Pii, Y.; Mimmo, T.; Tomasi, N.; Terzano, R.; Cesco, S.; Crecchio, C. Microbial interactions in the rhizosphere: Beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A Review. Biology and Fertility of Soils 2015, 51, 403–415. [CrossRef]

Glick, B.R.; Penrose, D.M.; Li, J. A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J. Theor. Biol. 1998, 190, 63–68. [CrossRef]

Vessey, J.K. Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil 2003, 255, 571–586. [CrossRef]

Compant, S.; Duffy, B.; Nowak, J.; Clément, C.; Barka, E.A. Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Appl. Environ. Microbiol. 2005, 71, 4951–4959. [CrossRef]

Lugtenberg, B.J.J.; Kamilova, F. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 2009, 63, 541–556. [CrossRef]

Kumar, A.; Singh, R.; Yadav, A.; Giri, D.D.; Singh, P.K.; Pandey, K.D. Isolation and characterization of bacterial endophytes of Curcuma longa L. 3 Biotech 2016, 6, 60. [CrossRef]

Santoyo, G.; Moreno-Hagelsieb, G.; Orozco-Mosqueda, M.D.C.; Glick, B.R. Plant growth-promoting bacterial endophytes. Microbiol. Res. 2016, 183, 92–99. [CrossRef]

Redman, R.S.; Sheehan, K.B.; Stout, R.G.; Rodriguez, R.J.; Henson, J.M. Thermotolerance generated by plant/fungal symbiosis. Science 2002, 298, 1581. [CrossRef]

Zahir, Z.A.; Arshad, M.; Frankenberger, W.T. Plant growth promoting rhizobacteria: Applications and perspectives in agriculture. Adv. Agron. 2004, 81, 97–168. [CrossRef]

Mishra, J.; Arora, N.K. Secondary metabolites of fluorescent pseudomonads in biocontrol of phytopathogens for sustainable agriculture. Appl. Soil Ecol. 2018, 125, 35–45. [CrossRef]

Rajkumar, M.; Ae, N.; Freitas, H. Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere 2009, 77, 153–160. [CrossRef]

Barea, J.M.; Pozo, M.J.; Azcón, R.; Azcón-Aguilar, C. Microbial co-operation in the rhizosphere. J. Exp. Bot. 2005, 56, 1761–1778. [CrossRef]

Boller, T.; Felix, G. A renaissance of elicitors: Perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol. 2009, 60, 379–406. [CrossRef]

Dobbelaere, S.; Croonenborghs, A.; Thys, A.; Ptacek, D.; Vanderleyden, J.; Dutto, P.; Okon, Y. Responses of agronomically important crops to inoculation with Azospirillum. A Review. Eur. J. Agron. 2001, 15, 145–170. [CrossRef]

Pieterse, C.M.J.; Zamioudis, C.; Berendsen, R.L.; Weller, D.M.; van Wees, S.C.M.; Bakker, P.A.H.M. Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 2014, 52, 347–375. [CrossRef]

Article Statistics

Copyright License

Download Citations

How to Cite

B.Toshbadalov. (2025). Characteristics And Research Approaches To Plant Microbiomes In The Ecological Conditions Of The Kyzylkum Desert. American Journal of Applied Science and Technology, 5(06), 44–56. https://doi.org/10.37547/ajast/Volume05Issue06-10