Random Number Generation in Operating Systems

Authors

  • Karimov Madjit Malikovich Agency for Assessment of knowledge and competences under the ministry of Higher Education, Science and Innovation of the Republic of Uzbekistan, Tashkent, Uzbekistan
  • Komil Tashev Department of Cryptology, Tashkent University of Information Technologies named after Muhammad al-Khwarizmi, Tashkent, Uzbekistan
  • Nuriddin Safoev Tashkent University of Information Technologies named after Muhammad al-Khwarizmi, Tashkent, Uzbekistan
  • Tashmatova Shaxnoza Sabirovna Tashkent State Technical University named after Islam Karimov, Tashkent, Uzbekistan
  • Qurbonova Kabira Erkinovna Tashkent State Technical University named after Islam Karimov, Tashkent, Uzbekistan
  • Fayziraxmonov Boburjon Baxtiyorjon o‘g‘li Tashkent University of Information Technologies named after Muhammad al-Khwarizmi, Tashkent, Uzbekistan

DOI:

https://doi.org/10.37547/ajast/Volume05Issue05-17

Keywords:

Random Number Generation, Operating Systems, Entropy

Abstract

Random number generation (RNG) plays a foundational role in security, cryptography, and system design. Operating systems today implement complex mechanisms for generating random numbers securely. This survey paper presents an overview of RNG techniques used in major operating systems, including Microsoft Windows, Linux, and macOS. We examine entropy sources, deterministic random bit generators (DRBGs), system APIs, and quality testing mechanisms. The survey highlights key differences between OS-level RNG designs and emphasizes best practices, challenges, and potential vulnerabilities. This work aims to serve as a reference for students, developers, and security professionals seeking a comparative understanding of secure randomness in computing environments.

References

Barker, E., & Kelsey, J. (2015). Recommendation for Random Number Generation Using Deterministic Random Bit Generators (Revised). NIST Special Publication 800-90A Rev. 1. https://doi.org/10.6028/NIST.SP.800-90Ar1

Eastlake, D., Schiller, J., & Crocker, S. (2005). Randomness Requirements for Security. RFC 4086. https://www.rfc-editor.org/rfc/rfc4086

Microsoft. (2023). Cryptography API: Next Generation. Microsoft Docs. https://learn.microsoft.com/en-us/windows/win32/seccng/cng-portal

Microsoft. (2023). BCryptGenRandom function (bcrypt.h). Microsoft Docs. https://learn.microsoft.com/en-us/windows/win32/api/bcrypt/nf-bcrypt-bcryptgenrandom

Linux Kernel Documentation. (2023). Random Number Generator. https://www.kernel.org/doc/html/latest/admin-guide/dev-random.html

Linux man-pages project. (2023). getrandom(2) – Linux manual page. https://man7.org/linux/man-pages/man2/getrandom.2.html

Apple Developer Documentation. (2023). SecRandomCopyBytes. https://developer.apple.com/documentation/security/1399291-secrandomcopybytes

Apple. (2020). Platform Security Guide. https://support.apple.com/guide/security/welcome/web

Gutterman, Z., Pinkas, B., & Reinman, T. (2006). Analysis of the Linux Random Number Generator. IEEE Symposium on Security and Privacy. https://doi.org/10.1109/SP.2006.26

Dorrendorf, L., Gutterman, Z., & Pinkas, B. (2007). Cryptanalysis of the Random Number Generator of the Windows Operating System. ACM CCS. https://doi.org/10.1145/1315245.1315274

Lacharme, P. (2012). Security flaws in Linux's /dev/random. https://eprint.iacr.org/2012/251

BSD Unix. (2022). arc4random and related APIs. https://man.openbsd.org/arc4random

Kelsey, J., Schneier, B., Ferguson, N. (1999). Yarrow-160: Notes on the Design and Analysis of the Yarrow Cryptographic Pseudorandom Number Generator. https://www.schneier.com/paper-yarrow.pdf

Dodis, Y., et al. (2013). Security Analysis of Pseudorandom Number Generators with Input: /dev/random is not Robust. ACM CCS. https://doi.org/10.1145/2508859.2516661

Intel Corporation. (2014). Intel® Digital Random Number Generator (DRNG) Software Implementation Guide. https://www.intel.com/content/www/us/en/content-details/671488/intel-digital-random-number-generator-drng-software-implementation-guide.html

National Institute of Standards and Technology. (2012). A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications. NIST SP 800-22 Rev. 1a. https://doi.org/10.6028/NIST.SP.800-22r1a

Müller, T. (2013). Security of the OpenSSL PRNG. International Journal of Information Security, 12(4), 251–265. https://doi.org/10.1007/s10207-013-0213-7

Debian Security Advisory. (2008). Debian OpenSSL Predictable PRNG Vulnerability (DSA-1571). https://www.debian.org/security/2008/dsa-1571

Downloads

Published

2025-05-21

How to Cite

Karimov Madjit Malikovich, Komil Tashev, Nuriddin Safoev, Tashmatova Shaxnoza Sabirovna, Qurbonova Kabira Erkinovna, & Fayziraxmonov Boburjon Baxtiyorjon o‘g‘li. (2025). Random Number Generation in Operating Systems. American Journal of Applied Science and Technology, 5(05), 74–81. https://doi.org/10.37547/ajast/Volume05Issue05-17

Most read articles by the same author(s)