Chaos Theory: Order in Disorder
DOI:
https://doi.org/10.37547/ajast/Volume05Issue05-11Keywords:
Chaos theory, fractals, nonlinear dynamicsAbstract
Chaos theory studies complex deterministic systems that may exhibit unpredictable behavior. This article discusses the key principles of chaos theory, its main concepts, and areas of application. Particular attention is paid to sensitivity to initial conditions, fractals, and nonlinear dynamic systems. Examples of chaos theory applications in meteorology, economics, biology, and modeling of complex processes are also discussed.
References
Lorenz, E. N. (1963). Deterministic Nonperiodic Flow. Journal of the Atmospheric Sciences , 20(2), 130-141.
Mandelbrot, B. B. (1982). The Fractal Geometry of Nature . W. H. Freeman and Company.
Strogatz , S. H. (1994). Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering . Westview Press .
Gleick , J. (1987). Chaos: Making a New Science . Viking Press .
Schuster, H. G. (1995). Deterministic Chaos: An Introduction . Wiley -VCH.
Alligood , K. T., Sauer, T. D., & Yorke , J. A. (1996). Chaos: An Introduction to Dynamical Systems . Springer .
Шарипова С. Ф., Бахриддинова А. Применение скалярного произведения векторов для решения уравнений и систем //Ta'limning zamonaviy transformatsiyasi. – 2024. – Т. 6. – №. 2. – С. 175-185.
Бахриддинова А. и др. Одновременное приведение двух квадратичных форм к каноническому виду //лучшая исследовательская работа. – 2024. – С. 6
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Sharipova Sadokat Fazliddinovna, Basheeva Ainur Urinbasarovna, Bakhriddinova Aziza Dilshod kizi

This work is licensed under a Creative Commons Attribution 4.0 International License.