Automatic Approximation of The Surface Model of The Final Distillation of Vegetable Oil Miscella
DOI:
https://doi.org/10.37547/ajast/Volume05Issue05-02Keywords:
Orthogonal projection, interactive learning, FlutterAbstract
The present study investigates the geometric modelling and surface construction process applied to the optimisation of the apparatus used in the final distillation stage of vegetable oil miscella. The surface is conceptualised as the geometric locus of points representing individual miscella particles, allowing for a more precise simulation of phase interactions during distillation. A key feature of the proposed approach is the generation of surfaces based on predefined sets of curves, through which the structure of the miscella flow can be interpreted and analysed. By employing geometric transformations and interpolation functions, the paper proposes a methodological framework for constructing complex technical forms that reflect the dynamic behaviour of miscella particles. The study also introduces a discrete spatial model using basic geometric primitives, such as planes, polynomials, and second-order curves, to approximate the evolving surface during distillation. The results of this modelling approach can significantly enhance control mechanisms and design efficiency in distillation equipment, providing a mathematically grounded basis for engineering improvements.
References
Симаков, Н. Н., & Бытев, Д. О. (2002). Численное моделирование турбулентной газовой струи. Известия вузов. Химия и химическая технология, 45(7), 117–121.
Нарзиев, М. С., ва бошқ. (2017). Пахта ёғи мисқилласини якуний дистилялаш технологик жараёнининг туғилиш таҳлили. Фан ва технологиялар тараққиёти илмий-техникавий журнал, (3), 3–5.
Хабибов, Ф. Ю. (2020). Совершенствование процесса и аппарата окончательной дистилляции мисцеллы растительного масла на основе многоступенчатого распыления (Диссертация). Ташкент. УДК 665.3.099.73.011.8
Akhmedov, Y., & Asadov, Sh. K. (2021). Construction of the shadow of a polyhedron. International Journal of Progressive Sciences and Technologies (IJPSAT), 24(2), 370–374. https://ijpsat.ijsht-journals.org/index.php/ijpsat/article/view/2695.
Akhmedov, Y., Asadov, S., & Azimov, B. (2022). Two-sided estimation of linear approximation error of second-order hypersurfaces. Journal of Physics: Conference Series, 2388, 012124. https://doi.org/10.1088/1742-6596/2388/1/012124
Асадов, Ш. К., & Ахмедов, Ю. Х. (2022). Аппроксимация гиперповерхностей полиэдрами применительно к расчетам несущей способности оболочек покрытий в ЕП пространстве. Universum: Технические науки, 4(97). https://7universum.com/ru/tech/archive/item/13430
Асадов, Ш. К., & Ахмедов, Ю. Х. (2022). Аппроксимация гиперповерхностей полиэдрами применительно к расчетам несущей способности оболочек покрытий в ЕП пространстве. Universum: Технические науки, 4(97). https://7universum.com/ru/tech/archive/item/13430
Akhmedov, Y., Asadov, S., & Azimov, B. (2022). Two-sided estimation on linear approximation error of second-order hypersurfaces. Journal of Physics: Conference Series, 2388(1), 012124. https://doi.org/10.1088/1742-6596/2388/1/012124
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 F. Yu. Khabibov, Yu. Akhmedov, A. Ch. Ramazonov, F.F. Yusupov

This work is licensed under a Creative Commons Attribution 4.0 International License.