Articles | Open Access | DOI: https://doi.org/10.37547/ajast/Volume03Issue06-01

THERMOELASTIC ANALYSIS OF CARBON FIBER REINFORCED COMPOSITES USING DROP-WEIGHT IMPACT TEST

Ghulam Malik , Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Pakistan

Abstract

Carbon fiber reinforced composites have become increasingly popular due to their high strength-to-weight ratio and durability. However, their behavior under impact loading is still not fully understood. In this study, a drop-weight impact test was used to investigate the thermoelastic response of carbon fiber reinforced composites. The results show that the composites exhibit a nonlinear thermoelastic behavior under impact loading, and the temperature rise is strongly influenced by the properties of the matrix material.

Keywords

Thermoelastic analysis, , carbon fiber reinforced composites, drop-weight impact test

References

Mouti, Z.; Westwood, K.; Kayvantash, K.; Njuguna, J. Low Velocity Impact Behavior of Glass Filled Fiber-Reinforced Thermoplastic Engine Components. Materials 2010, 3, 2463–2473. [Google Scholar] [CrossRef]

Troncossi, M.; Taddia, S.; Rivola, A.; Martini, A. Experimental Characterization of a High-Damping Viscoelastic Material Enclosed in Carbon Fiber Reinforced Polymer Components. Appl. Sci. 2020, 10, 6193. [Google Scholar] [CrossRef]

Boccardi, S.; Boffa, N.D.; Carlomagno, G.M.; Meola, C.; Ricci, F.; Russo, P.; Simeoli, G. Infrared thermography to impact damaging of composite materials. Health Monit. Struct. Biol. Syst. 2017, 10170, 1017004. [Google Scholar] [CrossRef]

Ciminello, M.; Boffa, N.D.; Concilio, A.; Galasso, B.; Romano, F.P.; Monaco, E. Damage Detection of CFRP Stiffened Panels by Using Cross-Correlated Spatially Shifted Distributed Strain Sensors. Appl. Sci. 2020, 10, 2662. [Google Scholar] [CrossRef][Green Version]

Sellitto, A.; Saputo, S.; Di Caprio, F.; Riccio, A.; Russo, A.; Acanfora, V. Numerical–Experimental Correlation of Impact-Induced Damages in CFRP Laminates. Appl. Sci. 2019, 9, 2372. [Google Scholar] [CrossRef][Green Version]

Rashid, T.; Khawaja, H.; Edvardsen, K. Determination of Thermal Properties of Fresh Water and Sea Water Ice using Multiphysics Analysis. Int. J. Multiphys. 2016, 10, 277–290. [Google Scholar] [CrossRef]

Nondestructive Testing of Composites (Polymer- and Metal-Matrix Composites)[1]. Nondestruct. Eval. Mater. 2018, 21, 631–658. [CrossRef]

Wang, X.; Liu, L.; Shen, W.; Zhou, H. CFRP Reinforced Foam Concrete Subjected to Dynamic Compression at Medium Strain Rate. Materials 2019, 13, 10. [Google Scholar] [CrossRef][Green Version]

Cao, H.; Ma, M.; Jiang, M.; Sun, L.; Zhang, L.; Jia, L.; Tian, A.; Liang, J. Experimental Investigation of Impactor Diameter Effect on Low-Velocity Impact Response of CFRP Laminates in a Drop-Weight Impact Event. Materials 2020, 13, 4131. [Google Scholar] [CrossRef]

Maier, A.; Schmidt, R.; Oswald-Tranta, B.; Schledjewski, R. Non-Destructive Thermography Analysis of Impact Damage on Large-Scale CFRP Automotive Parts. Materials 2014, 7, 413–429. [Google Scholar] [CrossRef]

Andleeb, Z.; Malik, S.; Hussain, G.; Khawaja, H.; Roemer, J.; Boiger, G.; Moatamedi, M. Multiphysics Study of Infrared Thermography (IRT) Applications. Int. J. Multiphys. 2020, 14, 249–271. [Google Scholar] [CrossRef]

Warnet, L.L.; Reed, P.E. Falling Weight Impact Testing Principles; Springer: Dordrecht, The Netherlands, 1999; pp. 66–70. [Google Scholar]

Stanley, P.; Chan, W.K. Quantitative stress analysis by means of the thermoelastic effect. J. Strain Anal. Eng. Des. 1985, 20, 129–137. [Google Scholar] [CrossRef]

Melvin, A.; Lucia, A.; Solomos, G. The thermal response to deformation to fracture of a carbon/epoxy composite laminate. Compos. Sci. Technol. 1993, 46, 345–351. [Google Scholar] [CrossRef]

Vaidya, R.U.; Chawla, K. Thermal expansion of metal-matrix composites. Compos. Sci. Technol. 1994, 50, 13–22. [Google Scholar] [CrossRef]

Nowacki, W. Dynamic problems of diffusion in solids. Eng. Fract. Mech. 1976, 8, 261–266. [Google Scholar] [CrossRef]

Olesiak, Z.; Pyryev, Y. A coupled quasi-stationary problem of thermodiffusion for an elastic cylinder. Int. J. Eng. Sci. 1995, 33, 773–780. [Google Scholar] [CrossRef]

Sherief, H.H.; Anwar, M.N. State-space approach to two-dimensional generalized thermoelasticity problems. J. Therm. Stress. 1994, 17, 567–590. [Google Scholar] [CrossRef]

Sherief, H.H.; Anwar, M.N. Problem in Generalized Thermoelasticity. J. Therm. Stress. 1986, 9, 165–181. [Google Scholar] [CrossRef]

Sherief, H.H.; Ezzat, M.A. Solution of the generalized problem of thermoelasticity in the form of series of functions. J. Therm. Stress. 1994, 17, 75–95. [Google Scholar] [CrossRef]

Sherief, H.H. Fundamental solution of the generalized thermoelastic problem for short times. J. Therm. Stress. 1986, 9, 151–164. [Google Scholar] [CrossRef]

Bayandor, J.; Thomson, R.S.; Scott, M.L.; Nguyen, M.Q.; Elder, D.J. Investigation of impact and damage tolerance in advanced aerospace composite structures. Int. J. Crashworthiness 2003, 8, 297–306. [Google Scholar] [CrossRef]

Hampson, P.R.; Moatamedi, M. A review of composite structures subjected to dynamic loading. Int. J. Crashworthiness 2007, 12, 411–428. [Google Scholar] [CrossRef]

Andleeb, Z.; Strand, C.; Malik, S.; Hussain, G.; Khawaja, H.; Boiger, G.; Moatamedi, M. Multiphysics Analysis of CFRP Charpy Tests by varying Temperatures. Int. J. Multiphys. 2020, 14, 143–160. [Google Scholar] [CrossRef]

Article Statistics

Copyright License

Download Citations

How to Cite

Ghulam Malik. (2023). THERMOELASTIC ANALYSIS OF CARBON FIBER REINFORCED COMPOSITES USING DROP-WEIGHT IMPACT TEST. American Journal of Applied Science and Technology, 3(06), 1–4. https://doi.org/10.37547/ajast/Volume03Issue06-01