MECHANICAL BEHAVIOR OF SUBCELLULAR ORGANELLES: A 3D FINITE ELEMENT MODEL STUDY OF TENSEGRITY STRUCTURES
Abstract
Subcellular organelles are critical for cellular functions and their mechanical behavior is important for understanding cellular mechanics. Tensegrity structures have been proposed as a model for the mechanical behavior of subcellular organelles. In this study, we developed a 3D finite element model of the tensegrity structure to investigate the mechanical behavior of subcellular organelles. The model was validated by comparing the simulation results with experimental data for microtubules. Our results demonstrate that the 3D finite element model of the tensegrity structure is capable of simulating the mechanical behavior of subcellular organelles and provides insight into the mechanisms that govern their mechanical properties.
Keywords
Subcellular organelles, Mechanical behavior,, Tensegrity structuresHow to Cite
References
• Ross, M.H.; Pawlina, W. Histology; Lippincott Williams & Wilkins: Pennsylvania, PA, USA, 2006. [Google Scholar]
• Kollmannsberger, P.; Fabry, B. Linear and Nonlinear Rheology of Living Cells. Annu. Rev. Mater. Res. 2011, 41, 75–97. [Google Scholar] [CrossRef][Green Version]
• Lim, C.T.; Zhou, E.H.; Quek, S.T. Mechanical models for living cells—A review. J. Biomech. 2006, 39, 195–216. [Google Scholar] [CrossRef] [PubMed]
• McGarry, J.; Prendergast, P. A three-dimensional finite element model of an adherent eukaryotic cell. Eur. Cells Mater. 2004, 7, 27–33. [Google Scholar] [CrossRef]
• Prendergast, P.J. Computational modelling of cell and tissue mechanoresponsiveness. Gravit. Space Res. 2007, 20, 43–50. [Google Scholar]
• De Santis, G.; Lennon, A.; Boschetti, F.; Verhegghe, B.; Verdonck, P.; Prendergast, P. How can cells sense the elasticity of a substrate?: An analysis using a cell tensegrity model. Eur. Cells Mater. 2011, 22, 202–213. [Google Scholar] [CrossRef] [PubMed]
• Chen, T.-J.; Wu, C.-C.; Tang, M.-J.; Huang, J.-S.; Su, F.-C. Complexity of the tensegrity structure for dynamic energy and force distribution of cytoskeleton during cell spreading. PLoS ONE 2010, 5, e14392. [Google Scholar] [CrossRef][Green Version]
• Kardas, D.; Nackenhorst, U.; Balzani, D. Computational model for the cell-mechanical response of the osteocyte cytoskeleton based on self-stabilizing tensegrity structures. Biomech. Model. Mechanobiol. 2013, 12, 167–183. [Google Scholar] [CrossRef]
• Barreto, S.; Clausen, C.H.; Perrault, C.M.; Fletcher, D.A.; Lacroix, D. A multi-structural single cell model of force-induced interactions of cytoskeletal components. Biomaterials 2013, 34, 6119–6126. [Google Scholar] [CrossRef][Green Version]
• Guerrero, C.R.; Garcia, P.D.; Garcia, R. Subsurface imaging of cell organelles by force microscopy. ACS Nano 2019, 13, 9629–9637. [Google Scholar] [CrossRef]
• Garcia, R. Nanomechanical mapping of soft materials with the atomic force microscope: Methods, theory and applications. Chem. Soc. Rev. 2020, 49, 5850–5884. [Google Scholar] [CrossRef]
• Thoumine, O.; Cardoso, O.; Meister, J.-J. Changes in the mechanical properties of fibroblasts during spreading: A micromanipulation study. Eur. Biophys. J. 1999, 28, 222–234. [Google Scholar] [CrossRef] [PubMed]
• Unnikrishnan, G.; Unnikrishnan, V.; Reddy, J. Constitutive material modeling of cell: A micromechanics approach. J. Biomech. Eng. 2007, 129, 315–323. [Google Scholar] [CrossRef] [PubMed]
• Vaziri, A.; Mofrad, M.R.K. Mechanics and deformation of the nucleus in micropipette aspiration experiment. J. Biomech. 2007, 40, 2053–2062. [Google Scholar] [CrossRef]
• Wang, N.; Tolic-Nørrelykke, I.M.; Chen, J.; Mijailovich, S.M.; Butler, J.P.; Fredberg, J.J.; Stamenovic, D. Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells. Am. J. Physiol. Cell Physiol. 2002, 282, C606–C616. [Google Scholar] [CrossRef][Green Version]
• Stamenović, D.; Coughlin, M.F. The role of prestress and architecture of the cytoskeleton and deformability of cytoskeletal filaments in mechanics of adherent cells: A quantitative analysis. J. Theor. Biol. 1999, 201, 63–74. [Google Scholar] [CrossRef]
• Ingber, D.E. Tensegrity I. Cell structure and hierarchical systems biology. J Cell Sci. 2003, 116, 1157–1173. [Google Scholar] [CrossRef][Green Version]
• Chen, C.S.; Mrksich, M.; Huang, S.; Whitesides, G.M.; Ingber, D.E. Geometric control of cell life and death. Science 1997, 276, 1425–1428. [Google Scholar] [CrossRef][Green Version]
• Kenner, H. Geodesic Math and How to Use It; University of California Press: Berkeley, CA, USA, 2003. [Google Scholar]
• Ingber, D.E. Tensegrity II. How structural networks influence cellular information processing networks. J. Cell Sci. 2003, 116, 1397–1408. [Google Scholar] [CrossRef] [PubMed][Green Version]