

Analysis Of Curriculums Of Fine Arts And Computer Graphics In Higher Educational Institutions

Rajabova Laylo Oʻtkir qizi

Chirchik State Pedagogical University, Department of "Fine Art and Design", Uzbekistan

Received: 17 August 2025; Accepted: 13 September 2025; Published: 15 October 2025

Abstract: This article studies the analysis of curricula in fine arts and computer graphics in higher education institutions. The article analyzes the content, structure, practical and theoretical directions of curricula, as well as their compatibility with modern technologies and innovations. The authors indicate the strengths and weaknesses of curricula in higher education and emphasize the need to introduce new, practice-oriented educational methods. As a result, the article provides recommendations aimed at improving the process of training qualified specialists in the fields of fine arts and computer graphics.

Keywords: Fine arts, Computer graphics, Curriculum, Educational analysis, Innovative technologies, Practical training, Digital design, Creativity, Professional training.

Introduction: Today, the role of fine arts and computer graphics in the educational process is increasingly increasing. Innovative technologies and development of the digital age make these areas even more relevant. High-quality and modern training in these areas in higher educational institutions is of great importance for the professional training of specialists and their compliance with market requirements. Fine arts and computer graphics curricula serve to form practical skills for students, along with theoretical knowledge. These programs help to organize the educational process systematically and effectively. The content, structure, methodology, and inclusion of innovations in the field of curriculum create the basis for the development of students' creative potential.

Fine arts curricula mainly include art history, painting techniques, composition, color theory, and aesthetics. The study of traditional and modern art forms is important in the educational process. At the same time, students acquire the skills of creative thinking and mutual critical assessment. However, some higher education institutions are not sufficiently interactive and practical in their curricula, which can undermine student readiness.

Computer graphics curricula cover digital design, 3D modeling, animation, visual effects, interactive media, and many other areas. These programs introduce students to modern software and technologies, which

helps prepare students for market-relevant careers. Computer graphics curricula should focus on practical training, as experience and technological knowledge are key factors in this field.

Problems: In some higher education institutions, curricula are outdated, modern technologies are not sufficiently studied, and little attention is paid to practice. At the same time, it is necessary to update the qualification level of teachers and teaching methods.

Suggestions: Continuously enrich curricula with modern technologies, allocate more space for practical training, study and implement foreign experiences. It is also recommended to strengthen project-based forms of work to develop the creative and technical potential of students.

Currently, with the rapid development of digital technologies, the fields of fine arts and computer graphics are gaining particular importance in the higher education system. Today, education in the field of art should include not only traditional methods, but also modern digital tools. Therefore, it is urgent to analyze the curricula of fine arts and computer graphics in higher education institutions.

Fine arts play an important role in creative thinking, aesthetic education and the study of cultural heritage. Computer graphics are a tool that takes this field to a new level and is the main tool for designers, illustrators, animators and other creative professionals.

International Journal of Pedagogics (ISSN: 2771-2281)

Although these two areas are currently taught in an integrated manner in many higher education institutions, the content of the curricula, their compliance with modern requirements and market needs are important issues.

Analysis of curricula 1. Fine arts disciplines:

Usually, the following disciplines are taught in fine arts curricula:

- * Painting
- * Composition
- * Drawing
- * Art history
- * Fundamentals of sculpture

These disciplines form artistic thinking, compositional skills and aesthetic taste in students. However, in many cases, the use of digital tools is not sufficient.

2. Computer Graphics:

Computer graphics disciplines include:

- * Computer Design (Photoshop, Illustrator)
- * 3D Modeling (3ds Max, Blender)
- * Animation Fundamentals (After Effects)
- * Web Design
- * Graphical Interfaces (UI/UX)

Although some curricula cover modern software, their focus on practice, individual projects, and market integration are still low.

- * Curriculums in many cases do not meet the requirements of the modern IT and design market.
- * Software practice is not sufficiently covered.
- * Some teachers are not fully aware of new technologies.
- * Students have limited opportunities to develop their creative projects in a commercial direction.
- 1. Updating curricula new curricula that meet modern requirements should be developed, integrating fine arts and computer graphics.
- 2. Introducing advanced software effective use of programs such as Adobe Creative Cloud, Blender, Figma, Unity should be taught.
- 3. Paying more attention to practical training involving students in individual or group projects, helping them create creative portfolios.
- 4. Retraining of specialists involving teachers in advanced training courses on new technologies.
- 5. Development of industrial cooperation involving students in real projects by strengthening cooperation with design studios, IT companies and other

organizations.

CONCLUSION

The joint development of the fields of fine arts and computer graphics in higher educational institutions will form not only creative, but also technical skills in students. There is an opportunity to make them more effective and modern by analyzing curricula. This will serve to train competitive specialists in the future.

REFERENCES

- Mirsoatova, L. (2023, December). PEDAGOGIK
 TA'LIM INNOVATSION KLASTERI HAMKORLIGI. In
 INTERNATIONAL SCIENTIFIC AND PRACTICAL
 CONFERENCE on the topic: "Priority areas for
 ensuring the continuity of fine art education:
 problems and solutions" (Vol. 1, No. 01).
- 2. Мирсоатова, Л. Ў. (2023). Интеграция Средств Компьютерной Графики В Образовательные Стандарты И Курсы Развития Навыков Самостоятельного Обучения. Diversity Research: Journal of Analysis and Trends, 1(8), 72-76.
- 3. Султанов ХЭ, Бойназарова НХ, Бердиев ДА, Мирсоатова ЛЎ, Маматкаримова МТ. Кластер ҳамкорлигида ижодий фаолиятни ташкил этишнинг ўқувчилар маънавий-ахлокий тарбиясидаги ахамияти. Yangi o 'zbekistonda pedagogik ta'lim innovatsion klasterini rivojlantirish istiqbollari" mavzusidagi xalqaro ilmiy-amaliy anjuman materiallari/may. 2022 May 20:613-20.
- **4.** Mirsoatova, L. (2022). USE OF INNOVATIVE METHODS IN THE DEVELOPMENT OF STUDENTS'CREATIVE ABILITIES. CURRENT RESEARCH JOURNAL OF PEDAGOGICS, 3(01), 45-49.
- **5.** Султанов, Х. Э., & Мирсоатова, Л. У. (2021). МЕХАНИЗМ ИННОВАЦИОННОЙ ДЕЯТЕЛЬНОСТИ В СФЕРЕ НЕПРЕРЫВНОГО ОБРАЗОВАНИЯ. Academic research in educational sciences, 2(5), 1240-1247.
- 6. Baymetov, B. B., & Misoatova, L. (2021). DEVELOPMENT OF CREATIVITY AND IMAGINATION OF SCHOOLCHILDREN IN FINE ARTS CLASSES. CURRENT RESEARCH JOURNAL OF PHILOLOGICAL SCIENCES, 2(05), 55-61.
- 7. Baymetov, L. M. B. B. (2020). Theory and methods of depicting the human body in higher pedagogical education. 2020/11" Science and Education. Scientific Journal, 1(8), 467-475.
- 8. Baymetov, B., & Sharipjonov, M. (2021). OLIY PEDAGOGIK TA'LIMDA TALABALARGA INSON QIYOFASINI AMALIY TASVIRLASH JARAYONIDA IJODIY KOMPYETYENSIYALARINI RIVOJLANTIRISH.

International Journal of Pedagogics (ISSN: 2771-2281)

Academic Research in Educational Sciences, 2(3), 1066-1070.