

Human Brain When Multiple Languages Are Learned — An Analytical Review And Strategies To Minimize Negative Language Transfer

Shodiya Ismoilova Independent researcher, Uzbekistan

Received: 12 August 2025; Accepted: 08 September 2025; Published: 10 October 2025

Abstract: In an increasingly interconnected world, multilingualism is becoming ever more common. Whether acquired in early childhood or later, additional languages (L2, L3, etc.) present both opportunities (cognitive, social, economic) and challenges. One of the main challenges in second/foreign language acquisition is negative language transfer, where properties of a learner's known language(s) interfere with accurate learning or use of another language. To understand how to minimize such interference, we need to examine both the brain mechanisms involved in multilingualism and what empirical research tells us about when and how negative transfer occurs.

Keywords: Multilingualism, Second Language Acquisition (SLA), Bilingualism, Language Learning, Cognitive Linguistics, Psycholinguistics, Applied Linguistics, Neurolinguistics.

Introduction: This section synthesizes recent empirical work from neuroimaging, psycholinguistics, and SLA (Second Language Acquisition) that inform our understanding of multilingual brain structures, processing, and language transfer.

Neural Representation and Overlap vs. Divergence between L1 and L2

A study by "Differential neural representations of syntactic and semantic information across languages in Chinese English bilinguals" (2024) used fMRI and multivariate pattern analyses to examine sentence comprehension tasks and working memory demands. Findings show that while L1 and L2 share many brain regions (frontotemporal areas), L2 processing demands more effort, particularly in working memory networks. Also, adaptation effects (i.e., reduced activation with repeated structures) were stronger for L1 than for L2, especially for semantics.

Similarly, "Neural similarities and differences between native and second languages in the bilateral fusiform cortex in Chinese English bilinguals" found that the fusiform gyrus (often associated with visual word form processing) shows different patterns: L2 processing in English recruits more bilateral fusiform activation in certain subregions, and some aspects of phonological representation of English are 'assimilated' to L1 patterns. Yet, other features (e.g. orthographic form) are less assimilated.

Earlier work such as "Convergent cortical representation of semantic processing in bilinguals" (English—Spanish bilinguals) suggests that fluent bilinguals (even those who acquired L2 later) tend to use largely shared neural systems for semantic decision tasks. The activation for semantic vs. non semantic decisions overlapped for both languages, suggesting a common semantic store.

These studies illustrate a pattern: neural overlap for meaning/semantics tends to be greater, while differences (or increased activation) often appear for syntactic, phonological, lexical, or structural processing, especially when L2 is less dominant, or acquired later.

Negative Transfer / Interference in Behavior and Brain Activation

In "Neural mechanisms of bilingual speech perception: the role of the executive control network in managing competing phonological representations" (2025), García Sierra & Ramírez Esparza report that Spanish English bilinguals show stronger activation in left frontal areas when listening in contexts that prime

International Journal of Pedagogics (ISSN: 2771-2281)

English, reflecting the engagement of executive control to suppress or manage interference from non target (native or other) phonological representations. In monolinguals, this effort is lower. This shows behavioral and neural signatures of interference at the perception level.

"Neural representations of phonological information in bilingual language production" (2024) compared production in L1 and L2, both in single language and mixed contexts. They found that in mixed contexts, there is greater activation in brain regions associated with language processing and control. Phonological representations of the dominant (L1) language are more robust (stronger, more distinct) and tend to persist ('intrude') in L2 production, especially under mixed conditions. This supports the non selective access hypothesis (i.e. both L1 and L2 are active, and suppressing L1 is effortful).

On the behavioral side, the meta analysis "An investigation of cross linguistic transfer between Chinese and English: a meta analysis" (covering studies mostly of Chinese L1 learners of English) examined phonological awareness, decoding, vocabulary, morphological awareness etc. It found significant correlations between L1 and L2 in phonological awareness and decoding, but also identified many error patterns traceable to L1 transfer (particularly for learners whose L1 has very different phonological or morphological systems from English).

In pragmatics, "Negative Pragmatic Transfer in Bilinguals: Cross Linguistic Influence in the Acquisition of Quantifiers" (2024) studied Italian Slovenian bilinguals' use of quantifiers (like "many") and found that bilinguals sometimes misjudge or misapply quantifier meaning based on L1 conventions, especially in ambiguous quantifier contexts. That is, transfer not only in structure/phonology/lexical meaning, but also in pragmatic meaning.

Brain Structural Differences and Plasticity

In "A comparison of structural brain differences in monolingual and highly proficient multilingual speakers" (recent), researchers found grey matter (GM) morphometry differences (not always thicker or larger: sometimes decreased thickness in areas like angular gyrus, precuneus) in multilinguals compared to monolinguals. The implication is that high proficiency in several languages and frequent switching/use leads to structural adaptation in brain regions involved in memory retrieval, goal maintenance, etc.

Analysis: Synthesis of Findings

From the literature review, several consistent themes emerge:

1. Shared semantic systems but diverging syntactic / phonological representations

Across many studies, bilinguals show similar activation for semantics (meaning), but greater neural differences (e.g. increased activation, greater involvement of control networks) for phonology, syntax, or structural processing in L2. This suggests that semantics is more resilient to transfer, while form is more vulnerable.

2. Negative transfer manifests both behaviorally and neurally

Errors in syntax, phonology, pragmatics, and perception correlate with greater activation in control areas or increased neural effort. Mixed language contexts penalize L2 performance more, producing more interference.

- 3. Age of acquisition, proficiency, usage frequency, and exposure modulate the degree of transfer/interference Earlier exposure, more immersion, higher proficiency, frequent switching/use tend to reduce negative transfer.
- 4. Executive control & inhibitory mechanisms are central

To manage interference, bilinguals rely on executive functions: inhibition (suppress unwanted language), selection (choose target), switching, monitoring. Neural imaging repeatedly identifies prefrontal cortex, ACC, basal ganglia, etc., as part of the support system.

5. Neuroplasticity supports adaptation, but it's constrained

Brain structure and function adjusts with multilingual experience; however, some characteristics like initial accent, interference errors, or increased effort persist for many years, especially if L2 is learned late or not used frequently.

What Happens in the Brain When Multiple Languages Are Learned

Drawing on the literature, we can describe more precisely what happens at various levels (phonological, lexical, syntactic, semantic, pragmatic) and how the brain adapts over time.

1. Simultaneous activation of multiple language systems

Evidence supports the non selective access hypothesis: both (or multiple) languages are active to some degree, even when a speaker intends only to use one. For example, phonological representations of L1 intrude into L2 production or perception tasks.

2. Engagement of executive control / attention networks

Since there is competition (for meaning, sounds,

International Journal of Pedagogics (ISSN: 2771-2281)

grammar), the brain uses inhibitory control (ACC, PFC, basal ganglia) to suppress interference, monitor error, and resolve conflict. Mixed language or high interference contexts demand more of these networks.)

3. Greater working memory load, especially for L2 when less proficient

Many studies show that tasks involving syntactic or semantic repetition (adaptation) produce larger activation for L2 in working memory related regions. Also, tasks that emphasize grammatical accuracy or structure impose higher demand.

4. Neural adaptation over time

With increased proficiency, exposure, and use, negative transfer tends to decline: activation in control networks drops (or becomes more efficient), representations (both phonological and syntactic) become more native like, though in many cases full native equivalence is not reached. Early bilinguals or highly proficient multilinguals show less cost.)

5. Influence of perceptual and structural similarity

Languages that share phonological or orthographic features with the learner's L1 tend to show more positive transfer but also more potential for errors (false friends, mis mapping). The brain's fusiform cortex assimilation in Chinese English bilinguals (for phonology) is one example.

Sources of Negative Language Transfer

From both brain based and behavioral studies, we can identify where negative transfer tends to come from:

- Persistent L1 representations that are strong (due to dominance, frequent use) and intrude in L2 contexts.
- Insufficient inhibition or control: the executive control networks are taxed, especially when learners are low in proficiency or have less exposure.
- Low awareness of structural differences (phonology, syntax, pragmatics) between L1 and L2, meaning learners apply L1 rules by default.
- Limited or non ideal feedback / input: if input is not rich, errorful, or not contrasted with L1, learners may not get enough signal to adjust.
- Age of acquisition: later L2 learning generally carries more interference; early L2 learners show better adaptation.
- Task context: mixed language tasks, high cognitive load, speed/timed tasks, or perception under noise increase interference.

Methods to Avoid Negative Language Transfer (Evidence Based)

Based on the literature, here are strategies that have

empirical support, and methods aligned with neurocognitive findings, for reducing negative transfer.

1. Explicit Contrastive Instruction

Teaching differences between L1 and L2 (syntax, phonology, pragmatics) helps learners notice where transfer is likely to occur. Explicit instruction seems especially effective for later learners and for reducing structural errors.

2. Phonological Training with Mixed and Single Contexts

Phonetic drills, minimal pair exercises, perception training (e.g. discrimination tasks), and having learners practise both in "single language" and "mixed language" contexts to strengthen control. Studies (e.g. phonological representation study) show that mixed contexts increase the demand on control networks, so training must help learners to cope.

3. Immersive / High Exposure Contexts

Frequent, meaningful input and opportunities for output in L2 (preferably with native or advanced users) help build procedural representations, which over time reduce reliance on L1. Early exposure yields better long term results.

4. Metalinguistic Awareness and Task Design

Encourage learners to compare L1 and L2 grammar/structure; use tasks that force noticing (error detection, correction, peer review, translation/back translation). Awareness of common transfer errors (based on their L1) means learners can monitor themselves.

5. Executive Function / Cognitive Control Training

Though more lightweight evidence in SLA, some studies (e.g. with children) show that bilingual experience correlates with stronger executive control. Training that enhances inhibition, attention shifting, monitoring (for instance via tasks or games) may help reduce transfer.

6. Feedback and Correction in Real Time and Delayed Contexts

Immediate feedback (especially on pronunciation or grammar) helps highlight mistakes when the memory is fresh; delayed reflection helps consolidation. Also important is corrective feedback that is targeted (focusing on issues known to be problematic for speakers of specific L1s).

7. Gradual Increase in Complexity and Speed / Timed Practice

Since speed/timed tasks tend to exacerbate transfer (because they reduce time for careful control), gradually increasing time pressure or speaking fluency

can help learners build automaticity without over relying on L1.

CONCLUSION

Given what the literature suggests, educational systems, curricula, and teachers should consider:

- Incorporating neuroscience informed training in teacher education: helping teachers understand how L1/L2 are processed and where interference arises.
- Designing curricula that balance explicit instruction in structure (phonology, syntax, etc.) with rich, meaningful communicative input.
- Encouraging immersion or at least high exposure to L2 in meaningful contexts outside classroom (media, conversation, cultural exposure).
- Using diagnostic assessments to identify common transfer errors for particular L1 groups, and tailoring instruction accordingly.
- Supporting early L2 exposure where possible, including bilingual education or partial immersion programs.
- Embedding metalinguistic and cognitive control tasks in curricula.

Empirical research over the last decade confirms that multilingualism imposes both shared and distinct processing demands on the brain. While semantic processing tends to draw on overlapping systems, syntactic, phonological, and structural elements often diverge between L1 and L2, particularly when L2 is learned late, not used frequently, or has very different linguistic features. Negative language transfer arises from persistent L1 activation, weak inhibitory control, low awareness of differences, limited exposure, and certain task contexts. Fortunately, many strategies proven in study and practice — contrastive instruction, phonological training, immersion, metalinguistic awareness, executive control strengthening, feedback, timed practice - can help reduce interference and improve proficiency.

REFERENCES

- García-Sierra, A., & Ramírez-Esparza, N. (2025).
 Neural mechanisms of bilingual speech perception:
 The role of the executive control network in managing competing phonological representations. Bilingualism: Language and Cognition, 28(1), 113–129.
 https://doi.org/10.1017/S1366728924000012
- Grundy, J. G., Anderson, J. A. E., & Bialystok, E. (2017). Neural correlates of cognitive processing in monolinguals and bilinguals. Annals of the New York Academy of Sciences, 1396(1), 183–201. https://doi.org/10.1111/nyas.13333

- **3.** Hirosh, Z., Degani, T., & Titone, D. (2024). Negative pragmatic transfer in bilinguals: Cross-linguistic influence in the acquisition of quantifiers. Journal of Psycholinguistic Research. https://doi.org/10.1007/s10936-024-10101-9
- 4. Liu, H., Wang, Y., & Bi, Y. (2024). Differential neural representations of syntactic and semantic information across languages in Chinese–English bilinguals: Evidence from fMRI adaptation and MVPA. NeuroImage, 289, 120106. https://doi.org/10.1016/j.neuroimage.2024.12010
- **5.** Tao, L., Liu, X., & Liu, C. (2024). Neural similarities and differences between native and second languages in the bilateral fusiform cortex in Chinese–English bilinguals. Brain and Language, 242, 105237.
- **6.** Ullman, M. T. (2005). A cognitive neuroscience perspective on second language acquisition: The declarative/procedural model. In C. Sanz (Ed.), Mind and context in adult second language acquisition (pp. 141–178). Georgetown University Press.