

# Architectural Transformation Of Healthcare Cybersecurity: Zero Trust, AI-Based Risk Analytics, And Operating System Modernization In Clinical Workstations

Dr. Rivan K. Malhotre

Department of Health Informatics, KU Leuven, Belgium

**Received:** 20 December 2025; **Accepted:** 10 January 2026; **Published:** 21 January 2026

**Abstract:** The rapid digitization of healthcare has intensified longstanding tensions between innovation-driven cybersecurity paradigms and the operational realities of legacy medical infrastructure. Healthcare delivery organizations increasingly rely on artificial intelligence-enabled clinical decision support systems, networked diagnostic platforms, and data-intensive workflows that demand resilient and adaptive security architectures. At the same time, hospitals remain structurally dependent on legacy medical devices and clinical workstations that were never designed to operate within modern threat environments. This structural contradiction has elevated zero-trust security architectures from a theoretical construct into a strategic imperative. Zero trust challenges traditional perimeter-based security by assuming persistent compromise, enforcing continuous verification, and tightly coupling identity, device posture, and contextual risk. However, the application of zero trust within healthcare contexts is neither straightforward nor uniform, particularly when legacy operating systems and constrained clinical workflows dominate hospital environments.

This study develops a comprehensive, theory-driven evaluation of zero-trust adoption in healthcare systems with a specific focus on the modernization of clinical workstations and the transition toward Windows 11 environments. Building upon recent empirical evaluations of Windows 11 adoption in hospital settings, the article situates operating system modernization as both a technical and governance challenge that intersects with regulatory compliance, artificial intelligence trustworthiness, and organizational risk cultures (Nayeem, 2026). Through an integrative qualitative methodology grounded in systematic literature synthesis, governance analysis, and comparative security architecture assessment, the research interrogates how zero-trust principles can be operationalized without disrupting patient safety or clinical efficiency.

The findings suggest that zero trust functions less as a singular architectural deployment and more as an evolving governance framework that reshapes accountability, authentication, and system interoperability. The results reveal that operating system modernization is a necessary but insufficient condition for effective zero-trust implementation. Instead, successful adoption depends on institutional learning, identity federation maturity, explainable artificial intelligence, and alignment between cybersecurity policy and clinical risk tolerance. This article contributes a multi-layered conceptual framework that bridges cybersecurity theory, healthcare governance, and socio-technical systems analysis. It concludes by outlining future research pathways that address ethical accountability, legacy system resilience, and the co-evolution of artificial intelligence and zero-trust security in healthcare ecosystems.

**Keywords:** Zero-trust architecture; healthcare cybersecurity; legacy medical devices; clinical workstations; artificial intelligence governance; Windows 11 adoption

**Introduction:** Healthcare cybersecurity has undergone a profound conceptual transformation over the past two decades, evolving from perimeter-focused defense strategies toward adaptive, identity-centric security models that assume constant exposure to threat. This transformation reflects not only the changing nature of cyber adversaries but also the deep structural changes within healthcare delivery organizations themselves. Hospitals, once characterized by isolated information systems and limited external connectivity, now operate as highly networked socio-technical ecosystems. These ecosystems integrate electronic health records, cloud-hosted analytics, artificial intelligence-driven diagnostics, remote monitoring platforms, and interoperable medical devices across organizational boundaries (Debnath, 2023). As a consequence, the traditional assumption that a secure network perimeter can meaningfully separate trusted internal systems from external threats has become increasingly untenable (Northcutt, 2005).

The erosion of the network perimeter has been particularly acute in healthcare due to the persistence of legacy systems. Many medical devices and clinical workstations continue to operate on outdated operating systems that lack modern security features, receive limited vendor support, and cannot be easily patched without disrupting clinical functionality. Empirical investigations indicate that a significant proportion of healthcare organizations rely on medical equipment running unsupported or end-of-life operating systems, creating systemic vulnerabilities that extend beyond individual devices (Kaspersky, 2024). These vulnerabilities are not merely technical deficiencies; they represent organizational dependencies that constrain cybersecurity strategy and shape risk governance decisions.

Zero-trust architecture has emerged as a response to these structural vulnerabilities by rejecting implicit trust and enforcing continuous verification of users, devices, and applications regardless of network location. Rather than relying on static defenses, zero trust emphasizes dynamic risk assessment, least-privilege access, and micro-segmentation of resources (He et al., 2022). In healthcare contexts, this paradigm promises to mitigate lateral movement attacks, reduce the blast radius of breaches, and align cybersecurity practices with regulatory expectations for patient data protection (Gellert et al., 2023). However, the implementation of zero trust in healthcare is complicated by the coexistence of advanced digital platforms and deeply embedded legacy technologies.

Recent scholarship has begun to explore this tension by examining how zero-trust principles can be adapted to

clinical environments without compromising patient safety or operational continuity (Tyler & Viana, 2021). A critical contribution to this emerging discourse is the evaluation of operating system modernization as a foundational enabler of zero trust. Clinical workstations serve as the primary interface between clinicians and digital health systems, mediating access to sensitive patient data and AI-enabled decision support tools. The adoption of modern operating systems such as Windows 11 introduces hardware-based security, virtualization-based isolation, and enhanced identity integration that align more closely with zero-trust requirements. An evaluative study of Windows 11 adoption in hospital clinical workstations demonstrates that modernization can significantly reduce attack surfaces while improving compatibility with zero-trust security controls (Nayeem, 2026).

Despite these advancements, the literature reveals a persistent gap between conceptual endorsement of zero trust and its practical realization in healthcare organizations. Much of the existing research focuses on technical architectures or policy frameworks in isolation, neglecting the socio-organizational dynamics that shape adoption outcomes (Burrell, 2024). Moreover, the rapid integration of artificial intelligence into healthcare introduces new dimensions of risk and trust that complicate zero-trust implementation. AI systems depend on large-scale data access, algorithmic transparency, and continuous learning processes that challenge conventional access control models (Habli et al., 2020). Ensuring that AI-driven healthcare systems operate securely within a zero-trust paradigm requires not only technical safeguards but also robust accountability mechanisms and ethical governance structures (Khan et al., 2025).

This article addresses these gaps by developing a comprehensive, interdisciplinary analysis of zero-trust adoption in healthcare, with particular attention to legacy clinical workstations and operating system modernization. The study advances three core arguments. First, zero trust should be understood as a governance framework rather than a discrete technical solution. Second, legacy system modernization, exemplified by Windows 11 adoption, is a critical enabler of zero trust but cannot substitute for organizational learning and policy alignment. Third, the integration of artificial intelligence amplifies both the necessity and the complexity of zero-trust security in healthcare environments.

By synthesizing insights from cybersecurity theory, healthcare informatics, and organizational governance, this research contributes a nuanced understanding of how zero-trust architectures can be operationalized within constrained clinical contexts. The following

sections elaborate the methodological approach, present interpretive findings grounded in the literature, and engage in an extended discussion of theoretical implications, limitations, and future research directions.

## **METHODOLOGY**

The methodological foundation of this study is qualitative, integrative, and theory-driven, reflecting the complexity of zero-trust adoption in healthcare systems. Rather than pursuing empirical measurement through experimental or statistical techniques, the research adopts an interpretive analytical approach that synthesizes existing scholarly literature, policy reports, and conceptual frameworks. This approach is justified by the exploratory nature of the research questions, which seek to understand how zero-trust principles intersect with legacy technologies, organizational governance, and artificial intelligence in healthcare contexts (Hong et al., 2018).

The study draws upon a structured literature synthesis informed by established systematic review guidelines while allowing for theoretical elaboration beyond descriptive aggregation. Reporting transparency principles articulated in contemporary review methodologies guide the selection and interpretation of sources to ensure rigor and coherence (Page et al., 2021). However, unlike narrow systematic reviews that prioritize methodological homogeneity, this research intentionally incorporates diverse source types, including peer-reviewed journals, technical reports, and policy investigations, to capture the multi-dimensional nature of healthcare cybersecurity.

A central methodological pillar is the comparative conceptual analysis of zero-trust architectures across healthcare-specific and general cybersecurity literature. Foundational works on perimeter security provide historical context for understanding the paradigmatic shift toward zero trust (Northcutt, 2005). These are contrasted with contemporary surveys and conceptual models that articulate the principles, challenges, and future trajectories of zero-trust architecture (Ghasemshirazi et al., 2023; Khan, 2023). This comparative lens enables the identification of conceptual continuities and ruptures that shape implementation outcomes.

Operating system modernization is examined through an analytical case lens focused on clinical workstations. Rather than treating Windows 11 adoption as a purely technical upgrade, the methodology situates it within broader organizational and regulatory contexts. Evaluative insights from hospital environments highlight how modern operating systems interact with zero-trust controls, identity management frameworks,

and compliance requirements (Nayeem, 2026). These insights are interpreted alongside industry analyses of legacy system prevalence and modernization challenges in healthcare (Eastwood, 2024).

The integration of artificial intelligence introduces an additional analytical layer. AI-related cybersecurity risks, accountability concerns, and trust frameworks are examined through a synthesis of healthcare AI ethics literature and secure system design research (Markus et al., 2021; Habli et al., 2020). Blockchain-based and AI-driven security enhancements are analyzed as complementary mechanisms that may reinforce zero-trust principles in distributed healthcare systems (Kasralikar et al., 2025; Kaul, 2019).

The methodological limitations of this approach are acknowledged. The reliance on secondary sources constrains the ability to generalize findings across all healthcare contexts, particularly given regional regulatory variations and organizational diversity. Moreover, the absence of primary empirical data limits causal inference. However, these limitations are mitigated by the depth of theoretical engagement and the triangulation of insights across multiple scholarly domains (Shojaei et al., 2024).

Through this integrative methodology, the study constructs a rich, context-sensitive understanding of zero-trust adoption in healthcare that prioritizes conceptual clarity, governance implications, and future research relevance.

## **RESULTS**

The interpretive analysis of the literature reveals several interrelated findings that illuminate the dynamics of zero-trust adoption in healthcare environments characterized by legacy clinical workstations. First, the results underscore that legacy operating systems constitute a systemic risk amplifier rather than an isolated vulnerability. Investigations into healthcare cyber incidents consistently demonstrate that outdated systems facilitate lateral movement and persistence by attackers, undermining traditional segmentation strategies (Mandiant, 2022; Ho et al., 2021). This finding aligns with broader assessments of healthcare cybersecurity risk complexity, which emphasize interdependencies between technical debt, organizational practices, and regulatory compliance (Burrell, 2024).

Second, the results indicate that operating system modernization significantly enhances the feasibility of zero-trust implementation. Modern platforms such as Windows 11 integrate hardware-rooted trust, secure boot processes, and virtualization-based security features that align with zero-trust principles of continuous verification and least privilege. Evaluative

evidence from hospital clinical workstations suggests that these features reduce reliance on compensatory controls and simplify policy enforcement (Nayeem, 2026). However, the findings also reveal that modernization alone does not eliminate risk; rather, it shifts the locus of governance from reactive patching toward proactive identity and access management.

Third, the analysis highlights the centrality of identity federation and access governance in zero-trust healthcare environments. Federated identity management frameworks enable granular access control across heterogeneous systems, but they also introduce new attack surfaces if improperly governed (Huda et al., 2024). The results suggest that healthcare organizations with mature identity governance capabilities are better positioned to operationalize zero trust without disrupting clinical workflows.

Fourth, the findings reveal a complex relationship between artificial intelligence integration and zero-trust security. AI-driven healthcare systems demand extensive data access and real-time processing, which can conflict with restrictive access controls if not carefully designed. However, when coupled with explainability mechanisms and accountability frameworks, AI can also enhance threat detection and adaptive security responses (Ajish, 2024; Ofili et al., 2025). The literature suggests that trust in AI systems is contingent upon transparency and governance rather than technical performance alone (Markus et al., 2021).

Finally, the results demonstrate that zero trust functions as an organizational change process rather than a one-time deployment. Successful implementations are associated with iterative learning, cross-disciplinary collaboration, and alignment between cybersecurity strategy and clinical risk management (Gellert et al., 2023). Conversely, attempts to impose zero-trust controls without stakeholder engagement often encounter resistance and workarounds that undermine security objectives.

Collectively, these findings portray zero trust as a socio-technical transformation shaped by legacy constraints, modernization efforts, and evolving governance norms within healthcare organizations.

## **DISCUSSION**

The discussion of these findings situates zero-trust adoption within broader theoretical debates on trust, risk, and governance in complex socio-technical systems. Traditional cybersecurity models conceptualized trust as a boundary condition, established at the network perimeter and maintained through static controls. Zero trust disrupts this paradigm by reframing trust as a dynamic, continuously negotiated state that must be verified through context-

aware mechanisms (He et al., 2022). In healthcare, this reconceptualization carries profound implications because trust is not merely a technical construct but a foundational element of clinical practice and patient-provider relationships.

Legacy systems complicate this reconceptualization by embodying historical assumptions about stability, isolation, and vendor-controlled risk. Medical devices and clinical workstations were often certified under regulatory regimes that prioritized functional safety over cybersecurity resilience. As a result, they resist rapid modification and constrain the deployment of modern security controls (Vijayasekhar, 2022). The persistence of these systems reflects not organizational inertia but rational risk trade-offs grounded in patient safety concerns. Zero-trust implementation must therefore navigate a delicate balance between security rigor and clinical reliability.

Operating system modernization emerges as a pivotal mediating factor in this balance. The adoption of Windows 11 in clinical workstations exemplifies how technological evolution can realign legacy environments with contemporary security paradigms. By embedding security features at the hardware and kernel levels, modern operating systems reduce dependence on perimeter defenses and enable fine-grained access control consistent with zero-trust principles (Nayeem, 2026). However, modernization also redistributes responsibility, requiring healthcare organizations to assume greater control over identity governance, patch management, and compliance monitoring.

The integration of artificial intelligence further intensifies governance challenges. AI systems introduce probabilistic decision-making and opaque learning processes that challenge traditional accountability frameworks. In a zero-trust context, AI-driven security analytics can enhance threat detection, but clinical AI applications must themselves be trusted to operate safely and ethically (Habli et al., 2020). This dual role of AI as both a security tool and a protected asset necessitates layered governance structures that address explainability, bias, and liability (Khan et al., 2025).

Counter-arguments to zero trust in healthcare often emphasize operational burden and clinician fatigue. Continuous authentication and strict access controls risk disrupting clinical workflows if poorly designed. The literature acknowledges these concerns but suggests that user-centric design and adaptive risk scoring can mitigate friction without sacrificing security (Tyler & Viana, 2021). Moreover, empirical analyses of cyber incidents demonstrate that the costs of inadequate

security far exceed the transitional challenges associated with zero-trust adoption (Help Net Security, 2023).

From a governance perspective, zero trust aligns with emerging regulatory expectations for risk-based security management. Investigations into large-scale healthcare cyber incidents, such as ransomware attacks on national health systems, highlight the consequences of implicit trust and insufficient segmentation (Department of Health, 2018). Zero trust offers a conceptual framework for translating regulatory principles into operational controls, but its effectiveness depends on organizational learning and leadership commitment.

The discussion also reveals significant avenues for future research. Longitudinal studies are needed to examine how zero-trust maturity evolves over time in healthcare organizations. Comparative research across regulatory jurisdictions could illuminate how policy environments shape adoption pathways. Additionally, interdisciplinary inquiry into clinician perceptions of zero-trust controls may inform more humane and effective security design.

Ultimately, zero trust should not be framed as a panacea but as an adaptive governance strategy that evolves alongside healthcare technologies and threats. Its successful integration requires sustained investment in modernization, education, and ethical oversight.

## **CONCLUSION**

This article has advanced a comprehensive, theory-driven examination of zero-trust architecture adoption in healthcare systems characterized by legacy clinical workstations and increasing reliance on artificial intelligence. By synthesizing cybersecurity theory, healthcare informatics, and governance scholarship, the study demonstrates that zero trust represents a fundamental shift in how trust, risk, and accountability are conceptualized and operationalized in healthcare environments.

The analysis underscores that legacy systems remain a critical barrier to effective cybersecurity, but modernization initiatives such as Windows 11 adoption can significantly enhance alignment with zero-trust principles when embedded within robust governance frameworks. Importantly, the findings highlight that technological upgrades must be accompanied by organizational learning, identity governance maturity, and ethical oversight of AI systems.

As healthcare continues to digitalize and decentralize, the relevance of zero trust will only intensify. Future research and practice must therefore move beyond

technical implementation toward holistic strategies that integrate security, clinical safety, and trustworthiness. In doing so, healthcare organizations can better navigate the complex interplay between innovation and resilience in an increasingly hostile cyber landscape.

## **REFERENCES**

1. Help Net Security. Rising cyber incidents challenge healthcare organizations. 2023.
2. Habli I, Lawton T, Porter Z. Artificial intelligence in health care: accountability and safety. *Bulletin of the World Health Organization*. 2020;98:251–256.
3. Kasralikar P, Polu OR, Chamarthi B, Veer Samara Sihman Bharattej Rupavath R, Patel S, Tumati R. Blockchain for securing AI-driven healthcare systems: a systematic review and future research perspectives. *Cureus*. 2025;17:e83136.
4. Northcutt S. Inside network perimeter security. 2nd ed. Sams; 2005.
5. Debnath S. Integrating information technology in healthcare: recent developments, challenges, and future prospects for urban and regional health. *World Journal of Advanced Research and Reviews*. 2023;19(1):455–463.
6. Ghasemshirazi S, Shirvani G, Alipour MA. Zero trust: applications, challenges, and opportunities. *arXiv*. 2023;1–23.
7. Nayeem M. Bridging zero-trust security and legacy medical devices: An evaluation of Windows 11 adoption in hospital clinical workstations. *Frontiers in Emerging Artificial Intelligence and Machine Learning*. 2026;3(1):1–8.
8. Gellert GA, et al. Zero trust and the future of cybersecurity in healthcare delivery organizations. *Journal of Hospital Administration*. 2023;12(1):1–8.
9. He Y, et al. A survey on zero trust architecture: challenges and future trends. *Wireless Communications and Mobile Computing*. 2022;2022:1–13.
10. Burrell DN. Understanding healthcare cybersecurity risk management complexity. *Land Forces Academy Review*. 2024;29:38–49.
11. Markus AF, Kors JA, Rijnbeek PR. The role of explainability in creating trustworthy artificial intelligence for health care: a comprehensive survey. *Journal of Biomedical Informatics*. 2021;113:103655.
12. Tyler D, Viana T. Trust no one? A framework for assisting healthcare organisations in transitioning to a zero-trust network architecture. *Applied Sciences*. 2021;11(16):1–18.

13. Khan MJ. Zero trust architecture: redefining network security paradigms in the digital age. *World Journal of Advanced Research and Reviews*. 2023;19(3):105–116.
14. Hong QN, Pluye P, Fàbregues S, et al. Mixed methods appraisal tool (MMAT), version 2018. *BMJ*. 2018;1–7.
15. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *BMJ*. 2021;372:n71.
16. Eastwood B. Tips for health systems on managing legacy systems to strengthen security. *HealthTech Magazine*. 2024.
17. Kaspersky. Kaspersky finds 73% of healthcare providers use medical equipment with a legacy OS. 2024.
18. Ho G, et al. Hopper: modeling and detecting lateral movement (extended report). *arXiv*. 2021;1–20.
19. Mandiant. M-Trends 2022 special report: executive summary. 2022.
20. Huda S, Islam MR, Abawajy J, Kottala VN, Ahmad S. A cyber risk assessment approach to federated identity management framework-based digital healthcare system. *Sensors*. 2024;24:5282.
21. Ajish D. The significance of artificial intelligence in zero trust technologies: a comprehensive review. *Journal of Electrical Systems and Information Technology*. 2024;11:30.
22. Ofili BT, Erhabor EO, Obasuyi OT. Enhancing federal cloud security with AI: zero trust, threat intelligence, and compliance. *World Journal of Research and Review*. 2025;25:2377–2400.
23. Shojaei P, Vlahu-Gjorgjevska E, Chow YW. Security and privacy of technologies in health information systems: a systematic literature review. *Computers*. 2024;13(2):1–25.
24. Vijayasekhar D. Securing the future: strategies for modernizing legacy systems and enhancing cybersecurity. *Journal of Artificial Intelligence and Cloud Computing*. 2022;1(3):1–3.
25. Department of Health. Investigation: WannaCry cyber-attack on the NHS. UK National Audit Office. 2018.
26. International Conference on Communication Technologies (ComTech 2017). Institute of Electrical and Electronics Engineers; 2017.