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ABSTRACT 

In the paper, we study the approximation of sub-Gaussian random processes (r.p.’s) by Jackson trigonometric 

polynomials. 

KEYWORDS 
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INTRODUCTION 

A random function ℥(𝑡), t ∊  𝑇 ⊂ Rm, m ≥ 1 is said to be pre-Gaussian [3], [5] if there exist constants k and K (0 < k, K < 

ꝏ) such that Mexp{𝑘℥(𝑡)} ≤ K. 

Let a pre-Gaussian random function ℥(𝑡), t ∊  𝑇 be such that M℥(𝑡) = 0, sup
t ∊ 𝑇

℥2(𝑡)  >0. Then the function ϕ (𝜆) 

= 𝑚𝑎𝑥
|𝑥|=𝜆

𝑠𝑢𝑝
t ∊ 𝑇

𝑙𝑛𝑀𝑒𝑥𝑝{𝑥℥(𝑡)} is defined, continuous, monotonically increasing, and convex on [0,Λ), for each 𝜆 ∊ [0,Λ), 

there are left and right derivatives of the function ϕ (𝜆), where Λ = sup{𝜆:ϕ (𝜆) < ꝏ} [5]. In [5], it was also shown 

that the function f (𝜆) = 
𝜑(𝜆)

𝜆
 is monotonically increasing on [0,Λ), lim

𝜆→ꝏ
𝑓 (𝜆) = 𝐿 , 0 < L ≤ ꝏ,  the function 𝜌(t,s) = 

𝑠𝑢𝑝
𝑥≠0

|𝑥|−1χ (𝑙𝑛𝑀𝑒𝑥𝑝{𝑥[℥(𝑡) − ℥(𝑠)]})   is a semimetric on 𝑇, where χ(x) is the inverse function to ϕ (𝜆). The metric 𝜌 is 

called the natural metric of the function ℥(𝑡). 
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  Let (𝑇, 𝜌) be the topological space corresponding to the metric 𝜌, H(𝜀) = ln (𝜀) is the 𝜀-entropy oft he space (𝑇, 𝜌), 

where N(𝜀) is the minimum possible number of points in the 𝜀-network S(𝜀) of the space (𝑇, 𝜌).  

   Introduce the function Ψ(𝜀) = ∫ 𝐻(𝑥)[𝜒(𝐻(𝑥))]
𝜀

0
-1dx. 

    Theorem D [5]. Let ℥(𝑡), 𝑡 ∊ 𝑇 be a pre-Gaussian, separable with respect to some set separable on (𝑇, 𝜌), random 

function, L = ꝏ, Ψ(𝜀) < ꝏ. Then ℥(𝑡) is bounded, continuous on (𝑇, 𝜌) with probability one, and for all u ≥ 

𝑖𝑛𝑓
𝑝∊(0,1)

[
2

𝑝(1−𝑝)
Ψ(𝑝) + 

1

1−𝑝
𝜑′(

𝜆(𝐻(𝑝)−0)

2(1−𝑝)
)], we have the estimate 

P {𝑠𝑢𝑝
t ∊ 𝑇

℥(𝑡) ≥ 𝑢} ≤ 𝑒𝑥𝑝{- 𝜑∗(𝑢 − Ψ∗(𝑢))},    где    Ψ∗(𝑢) = 𝑖𝑛𝑓
𝑝∊(0,1)

[up + 
2

𝑝
Ψ(𝑝)] 

where 𝜑∗(𝑥) = 𝑠𝑢𝑝
𝜆≥0

 (𝜆𝑥 − 𝜑(𝜆)) ,  x ≥ 0 is the Young-Fenchel transformation [6]. 

  A random variable (r.v.) ℥ is said to be sub-Gaussian [10] if there is a ≥ 0 such that Mexp{℥𝜆} ≤ {
𝑎2 𝜆2

2
} for all 𝜆 ∊ R1. 

   Denote τ (℥) = inf{ a ≥ 0: Mexp{℥𝜆} ≤ {
𝑎2 𝜆2

2
},  𝜆 ∊ R1 }. 

   It is known [2] that a r.v. ℥ is sub-Gaussian if and only if M℥ = 0 adn τ (℥) < ꝏ. It was also shown in [2] that τ (℥) =  

sup
𝜆≠0

{
2𝑙𝑛M𝑒𝑥𝑝{℥𝜆}

𝜆2 }
1

2, and the space of all sub-Gaussian r.v.’s ℥ with the norm || ℥ ||𝑠𝑢𝑏 = τ (℥) is a Banach space. 

   A random function ℥(𝑡), t ∊  𝑇 ⊂ Rm is said to be sub-Gaussian [2] if M℥(𝑡) = 0 and sup
t ∊ 𝑇

τ (℥(𝑡)) < ꝏ. 

   Remark 1. Any sub-Gaussian random function ℥(𝑡), 𝑡 ∊ 𝑇 is pre- Gaussian, and for it, 

𝜑(𝜆) = τ∙
𝜆2

2
 ,   χ(x) = √

2𝑥

τ
 ,  L = ꝏ,  𝜑∗(x) = 

𝑥2

2τ
  , 

the natural metric   𝜌(t,s) = 
1

√τ
|| ℥(𝑡) − ℥(𝑠)||𝑠𝑢𝑏 , where τ = sup

t ∊ 𝑇
|| ℥(𝑡)||𝑠𝑢𝑏.   

   Remark 2. Any centered Gaussian random function ℥(𝑡)  is sub-Gaussian, and the norm || ℥(𝑡)||𝑠𝑢𝑏 = {𝑀℥2(𝑡)}
1

2. 

   Theorem D implies the following estimate, which we will use in the future. 

    Corollary D. Let ℥0(𝑡), 𝑡 ∊  𝑇, be a sub-Gaussian, separable with respect to some separable on (𝑇, 𝜌0) set, random 

function, where 𝜌0(𝑡, 𝑠) =
1

√τ
||℥0(𝑡) − ℥0(𝑠)||𝑠𝑢𝑏,   𝑡, 𝑠 ∊ 𝑇,   τ = sup

t ∊ 𝑇
|| ℥(𝑡)||𝑠𝑢𝑏 .  

    If 0 < τ ≤ 1 и Ψ(1) < ꝏ, then, for all u ≥ 16 Ψ(1), 

P{𝑠𝑢𝑝
t ∊ 𝑇

℥0(𝑡) ≥ 𝑢} ≤ exp{– 
𝑢2−6𝑢

3
2√Ψ(1)

2
}. 

Proof of Corollary D. According to Remark 1, L = ꝏ, i.e., Theorem D is applicable for a sub-Gaussian random function 

℥0(𝑡). Since 
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𝑖𝑛𝑓
𝑝∊(0,1)

[
2

𝑝(1−𝑝)
Ψ(𝑝) + 

1

1−𝑝
𝜑′(

𝜆(𝐻(𝑝))

2(1−𝑝)
− 0)] = 𝑖𝑛𝑓

𝑝∊(0,1)
[

2

𝑝(1−𝑝)
Ψ(𝑝) + 

√2

2

√τ𝐻(𝑝) 

(1−𝑝)2 )], 

and 𝜑∗(x) = 
𝑥2

2τ
, then according to Theorem D, 

P{𝑠𝑢𝑝
t ∊ 𝑇

℥0(𝑡) ≥ 𝑢}≤ exp{- 
𝑢2−2𝑢Ψ∗(𝑢) +[Ψ∗(𝑢)]2

2τ
}≤ exp{- 

𝑢2−2𝑢Ψ∗(𝑢) + [Ψ∗(𝑢)]2

2
} 

for all  u  ≥ 𝑖𝑛𝑓
𝑝∊(0,1)

[
2

𝑝(1−𝑝)
Ψ(𝑝) +  +

√2

2

√τ𝐻(𝑝) 

(1−𝑝)2 )]. 

     Obviously,  

Ψ(𝑝) =  
√2τ

2
∫ √𝐻(𝑥)

𝑝

0
 dx ≥ 

𝑝√2τ𝐻(𝑝)

2
 , i.e.  𝐻(𝑝) ≤  Ψ𝟐(𝑝)

𝟐

𝑝2τ
, 

hence, 

𝑖𝑛𝑓
𝑝∊(0,1)

[
2

𝑝(1−𝑝)
Ψ(𝑝) + 

√2

2

√τ𝐻(𝑝) 

(1−𝑝)2 )]  ≤ 𝑖𝑛𝑓
𝑝∊(0,1)

[
2Ψ(𝑝)

𝑝(1−𝑝)
 + 

Ψ(𝑝)

(1−𝑝)2)] ≤  16 Ψ (
1

2
) ≤ 16 Ψ(1). 

We obtain from here that, for all u ≥ 16 Ψ(1), 

P{𝑠𝑢𝑝
t ∊ 𝑇

℥0(𝑡) ≥ 𝑢}≤ exp{– 
𝑢2−2𝑢Ψ∗(𝑢) +[Ψ∗(𝑢)]2

2τ
}, 

If we take into account that Ψ∗(𝑢) ≤ 6 √𝑢Ψ(1) and exp{- 
𝑢2−6𝑢

3
2√Ψ(1)

2
}≤ 1 as u  ≥ 16 Ψ(1), then we come to the 

assertion of Corollary D. Corollary D is proved. 

MAIN RESULTS 

Let us consider a sub-Gaussian separable, measurable separable 2𝜋- periodic mean-square continuous real sub-

Gaussian r.p. ℥(𝑡),  𝑡 ∊ 𝑅1. Assume that the following condition is satisfied for it 

(А):   || ℥(𝑡) − ℥(𝑠)||𝑠𝑢𝑏 ≤  𝜔(|𝑡 − 𝑠|),   t, s ∊  𝑅1,  

where 𝜔(𝑧) is the modulus of continuity, for which there exists the inverse function 𝜔−1  (𝑥)  , and the integral 

∫
𝜔(𝑧)

𝑧√|𝑙𝑛𝑧|
 

1

0
dz < ꝏ. 

   It is known [11], that the r.p. ℥(𝑡) is continuous with probability one.  

We study the normalized process of deviations (n.p.d.) 𝜂𝑛(t) = 
℥(𝑡)−𝐷𝑛 (℥;𝑡)

С0𝜔(1
𝑛⁄ )

 , where 𝐷𝑛 (℥; 𝑡) is the Jackson operator 

(trigonometric polynomial): 

𝐷𝑛 (℥; 𝑡) =  𝐷𝑛℥(𝑡) = ∫ ℥(𝑡 + 𝑥)
𝜋

−𝜋
𝐷𝑛(𝑥)𝑑𝑥 = 2𝜋 ∑ ℥𝑘

2𝑛−2
−(2𝑛−2) 𝜑𝑘

(𝑛)
𝑒𝑖𝑘𝑡, 
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𝐷𝑛(𝑥) =
3

2𝜋(2𝑛2+1)𝑛
(

𝑠𝑖𝑛
𝑛𝑥

2

𝑠𝑖𝑛
𝑥

2

)
4

  is the Jackson kernel, ℥𝑘  and 𝜑𝑘
(𝑛)

 are the Fourier coefficients of ℥(𝑡) and 𝐷𝑛(𝑥), 

respectively, С0 = 
𝜋√3

2
 + 1 is the Jackson constant [9, p.168] 

   Due to the 2𝜋-periodicity of the n.p.d. 𝜂𝑛(t), it suffices to study it on the interval [–𝜋, 𝜋]. 

   Note that the n.p.d. 𝜂𝑛(t) was studied in [8] when ℥(𝑡) is a stationary Gaussian r.p. and 𝜔(𝑥) =  𝑥𝛼 , 0 < 𝛼 < 1. 

    Theorem 1. If condition (A) is satisfied, then for z ≥ 64, the inequality 

P{𝑚𝑎𝑥
|𝒕|≤𝜋

|
𝜂𝑛(𝑡)

𝛾𝑛
| <

√𝟐

𝟐
𝑧} ≤  2exp {−

𝑧2

16
𝛾𝑛

2} 

holds, where 𝛾𝑛= 2√𝑙𝑛 𝑛 + 
1

𝜔(1
𝑛⁄ )

∫
𝜔(𝑥)

𝑥√|𝑙𝑛𝑥|

1

𝑛
0

 dx + √ln(𝜋 + 1). 

   Proof of Theorem 1. We use Corollary D. To do this, we show that 𝜏𝑛 = || 𝜂𝑛(𝑡)||𝑠𝑢𝑏 ≤ 1 for all 𝑛 ∊ N. 

  Indeed, for any 𝑡 ∊ [–𝜋, 𝜋] and 𝑛 ∊ N, we have 

𝜏𝑛 =  || 𝜂𝑛(𝑡)||𝑠𝑢𝑏 = 
1

С0𝜔(1
𝑛⁄ )

 ||℥(𝑡) − 𝐷𝑛 (℥; 𝑡) ||𝑠𝑢𝑏 ≤ 

≤  
1

С0𝜔(1
𝑛⁄ )

 ∫ ||℥(𝑡 + 𝑥) −  ℥(𝑡)||𝑠𝑢𝑏𝐷𝑛 (𝑥)
𝜋

−𝜋
𝑑𝑥 ≤ 

             ≤ 
1

С0𝜔(1
𝑛⁄ )

 ∫ 𝜔(|𝑥|)𝐷𝑛 (𝑥)
𝜋

−𝜋
𝑑𝑥 ≤ 1.        (1) 

The last inequality follows from the Jackson theorem ([9], p. 167). 

    Obviously, M𝜂𝑛(𝑡) = 0, hence, by virtue of (1), the n.p.d. 𝜂𝑛(𝑡) is a sub-Gaussian r.p. for any 𝑛 ∊ N . 

    Let 𝑛 ∊ N be any fixed one. Suppose that 𝜏𝑛 > 0. (If 𝜏𝑛 = 0, then 𝜂𝑛(t) ≡ 0 with probability one, and for this case, 

the assertion of Theorem 1 is obvious). 

    According to Remark 1, for 𝜂𝑛(t),  𝜑𝑛 (𝑥) = 
𝜏𝑛𝑥2

2
 ,   χ(x) = √

2𝑥

𝜏𝑛
, therefore, the natural metric  𝜌𝑛(t,s) = 

1

√𝜏𝑛
 

||𝜂𝑛(𝑡) − 𝜂𝑛(𝑠)||𝑠𝑢𝑏. For 𝜌𝑛(t,s) ,  t, s ∊ [-𝜋, 𝜋], we have 

𝜌𝑛(t,s) =
1

С0√𝜏𝑛𝜔(1
𝑛⁄ )

 || ∫ [℥(𝑡 + 𝑥) −  ℥(𝑡) − ℥(𝑠 + 𝑥) + ℥(𝑠)]
𝜋

−𝜋
𝐷𝑛 (𝑥)𝑑𝑥||𝑠𝑢𝑏 ≤ 

≤   
2𝜔(|𝑡−𝑠|)

С0√𝜏𝑛𝜔(1
𝑛⁄ )

  ≤  
2𝜔(|𝑡−𝑠|)

√𝜏𝑛𝜔(1
𝑛⁄ )

.      (2) 

   Using (2), we estimate the 𝜀-entropy 𝐻𝑛(𝜀) of the space ([-𝜋, 𝜋], 𝜌𝑛). 

   Let 𝑁𝑛(𝜀) be the minimum possible number of points in the 𝜀-network of the set [–𝜋, 𝜋]. Then inequality (2) implies 

that 𝑁𝑛(𝜀) ≤ 𝑀𝒏(𝜀), where  

𝑀𝒏(𝜀) = min{ k ∊ 𝑁 : 
2𝜔(𝜋

𝑘⁄ )

√𝜏𝑛𝜔(1
𝑛⁄ )

  ≤ 𝜀 }, 
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what implies 

𝑀𝒏(𝜀) ≤
𝜋

𝜔−𝟏(𝜀
√𝜏𝑛

2𝜔(1
𝑛⁄ )

)
 + 1, 

hence,   

𝐻𝑛(𝜀) = ln 𝑁𝑛(𝜀) ≤ ln (𝜋 + 𝜔−𝟏 (
𝜀√𝜏𝑛

2𝜔(1
𝑛⁄ )

) + ln
1

𝜔−𝟏(
𝜀√𝜏𝑛

2
𝜔(1

𝑛⁄ ))

   , 

where 𝜔−1(𝑥) is the function inverse to 𝜔(𝑥). 

Estimate Ψ𝑛(1) = ∫ 𝐻𝑛(𝜀)[𝜒𝑛(𝐻𝑛(𝜀))]
1

0
-1d𝜀:       

Ψ𝑛(1) = 
√2𝜏𝑛

2
∫ √𝐻𝑛(𝜀) 

1

0
d𝜀 ≤ 

≤
√2𝜏𝑛

2
 {√𝑙𝑛[𝜋 + 𝜔−1 (

√𝜏𝑛

2
𝜔(1

𝑛⁄ ))] +∫
√

|𝑙𝑛
1

𝜔−𝟏(
𝜀√𝜏𝑛

2
𝜔(1

𝑛⁄ ))

|
1

0
 d𝜀} = 

= 
√2𝜏𝑛

2
 {√𝑙𝑛[𝜋 + 𝜔−𝟏 (

√𝜏𝑛

2
𝜔(1

𝑛⁄ ))] + 
2

√𝜏𝑛
∫ √|𝑙𝑛

1

𝜔−𝟏(𝑧𝜔(1
𝑛⁄ )

|
√𝜏𝑛

2
0

  d z }. 

Using (1), we obtain from here that  

        Ψ𝑛(1) ≤ 
√2

2
 {√𝑙𝑛(𝜋 + 1) + 2 ∫ √|𝑙𝑛

1

𝜔−𝟏(𝑧𝜔(1
𝑛⁄ )

|
1

0
 d z }  = 

= 
√2

2
 {√𝑙𝑛(𝜋 + 1) + 2√ln 𝑛 +

1

𝜔(1
𝑛⁄ )

∫
𝜔(𝑧)

𝑧√|𝑙𝑛𝑧|

1

𝑛
0

 d z }, 

i.e.  

Ψ𝑛(1) ≤ 
√2

2
 𝛾𝑛< ꝏ for each 𝑛 ∊ N.         (3) 

   Obviously, the n.p.d. 𝜂𝑛(t) is continuous with probability one, therefore [4, p. 203] it is separable on ([–𝜋, 𝜋], 𝜌0), 

where 𝜌0= | t-s |. By virtue of (2), the metric 𝜌𝑛 is topologically equivalent to the metric 𝜌0, therefore the n.p.d. 𝜂𝑛(𝑡) 

is separable on ([–𝜋, 𝜋], 𝜌𝑛). Hence, taking into account (1), (3) and applying Corollary D, we obtain that for all u ≥ 

36Ψ𝑛(1), 

P{𝑚𝑎𝑥 
|𝒕|≤𝜋

𝜂𝑛(𝑡) ≥ 𝑢} ≤ exp{– 
𝑢2−6𝑢

3
2√ Ψ𝑛(1))

2
}. 

From here, using (3), we arrive at the inequality 

P{𝑚𝑎𝑥
|𝒕|≤𝜋

 𝜂𝑛(t) ≥ 𝑢} ≤ exp{- 
𝑢2−6𝑢

3
2 𝛾𝑛 √

√2

2

2
} if u ≥ 18 𝛾𝑛√2. 
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    Put 𝑢 = 
√2

2
 𝛾𝑛𝑣, then for 𝑣 ≥ 36, 

P{𝑚𝑎𝑥
|𝒕|≤𝜋

𝜂𝑛(𝑡)

𝛾𝑛
≥ 𝜔(𝑧) 𝑣} ≤ exp{(

√2

2
 𝛾𝑛)2 (– 

𝑣2

2
 +3𝑣

3

2 )}. 

If we assume that 𝑣 ≥ 64,  then 𝑣2–6𝑣
3

2 ≥ 
𝑣2

4
, therefore, for 𝑣 ≥ 64, the following inequality holds: 

P{𝑚𝑎𝑥
|𝒕|≤𝜋

𝜂𝑛(t)

𝛾𝑛
≥

√2

2
 𝑣} ≤ exp{- 

𝑣2

16
 𝛾𝑛

2)}. 

Finally, the inequality  

P{𝑠𝑢𝑝
|𝒕|≤𝜋

|
𝜂𝑛(𝑡)

𝛾𝑛
| ≥

√2

2
 𝑣} ≤  2P{𝑠𝑢𝑝

|𝒕|≤𝜋

𝜂𝑛(t)

𝛾𝑛
≥

√2

2
 𝑣} 

implies the assertion of Theorem 1.  

Theorem 1 is proved.    

Corollary 1. Let Ɛ > 0, 0 < 𝛿 < 1 and the conditions of Theorem 1 be satisfied.  

If 𝜔(1
𝑛⁄ ) 𝛾𝑛 → 0 as 𝑛 → ꝏ, then, for all 𝑛 ≥  𝑛0 + 1, 

P{𝑚𝑎𝑥
|𝒕|≤𝜋

|℥(𝑡) − 𝐷𝑛 (℥; 𝑡)| < Ɛ} ≥ 1–𝛿, 

where  

𝑛0 = 𝑛0(𝑛0, 𝛿) = min{ 𝑛 ∊ 𝑁: 𝐶0√2 𝜔(1
𝑛⁄ ) (32𝛾𝑛 + 2√𝑙𝑛

2

𝑛
) ≤  Ɛ}. 

Proof of Corollary 1. Put 𝑧0 = 
  4   

𝛾𝑛
√𝑙𝑛

2

𝛿
 .  

Then, according to Theorem 1,   

P{𝑚𝑎𝑥
|𝒕|≤𝜋

𝜂𝑛(𝑡)

𝛾𝑛
≥

√2

2
 (64 + 𝑧0 )} ≤  2exp{- 

(64+𝑧0 )
2

16
 𝛾𝑛

2)} ≤ 2exp{- 
𝑧0

2

16
 𝛾𝑛

2)}, 

i.e.   P{𝑚𝑎𝑥
|𝒕|≤𝜋

|℥(𝑡) − 𝐷𝑛 (℥; 𝑡)| ≥  𝐶0√2 𝜔(1
𝑛⁄ ) (32𝛾𝑛 + 2√𝑙𝑛

2

𝑛
)} ≤ 𝛿, 

which proves Corollary 1. 

Corollary 1 is proved. 

     Let ℥0(𝑡) ∊ 𝐶Ω
2𝜋(𝑅1 ) be a Gaussian stationar r.p. with zero mean, unit variance and the continuous correlation 

function r (t), satisfying the following condition [7], [8], [1]: 

r (t) = 1–|𝑡|2𝛼 + 𝑓(𝑡),  0 < 𝛼 ≤ 1,   𝑓(𝑡) = o(|𝑡|2𝛼), as 𝑡 → 0.   (4) 

According to Remark 2,  

||℥0(𝑡) − ℥0(𝑠) ||𝑠𝑢𝑏= {M[℥0(𝑡) − ℥0(𝑠)]2}
1

2 = {2[1 − 𝑟 (𝑡 − 𝑠)]}
1

2, 
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moreover, condition (4) implies that there exists a constant 𝐶1 > 0 such that  

{2[1 − 𝑟 (𝑡 − 𝑠)]}
1

2 ≤ 𝐶1|𝑡 − 𝑠|𝛼, 

i.e. the r.p. ℥0(𝑡) satisfies the condition of Theorem 1 with 𝜔(𝑥) =  𝐶1|𝑥|𝛼 , 0 < 𝛼 ≤ 1,  

0 < 𝐶1 < ꝏ, and the condition of Corollary 1, hence, the following statement takes place. 

Corollary 2. There is a constant 𝐶1,  0 < 𝐶1 < ꝏ, such that for any 𝑛 ≥  3,   0 < 𝛿 < 1, the inequality 

P{𝑚𝑎𝑥
|𝒕|≤𝜋

|℥0(𝑡) − 𝐷𝑛 (℥0; 𝑡)| ≥  𝐶0𝐶1√2 [64 𝑛−𝛼√ln 𝑛 + 𝑛−𝛼(32√ln(𝜋 + 1) +  2√𝑙𝑛
2

𝛿
) +

𝟑𝟐𝑛−𝛼

𝛼
Ɛ𝒏]} ≤ 𝛿 

takes place, where Ɛ𝒏~
𝟏

√𝒍𝒏 𝒏
 . 

Proof of Corollary 2. The assertion of Corollary 2 follows from Theorem 1 if we take into account that 

           𝛾𝑛= √𝑙𝑛(𝜋 + 1) + 2√ln 𝑛 +
2𝑛𝛼

𝜔(1
𝑛⁄ )

∫ exp {−𝑢2}
ꝏ

√𝛼𝑙𝑛 𝑛
 d z,    когда 𝜔(𝑥) =  𝐶1|𝑥|𝛼 . 

   For comparison, we present one result from [8]: 

   Let 𝑛 →  ꝏ and u = u(n) →  ꝏ such that n = ]
𝜆

2𝜋𝜇𝛼(𝑢)
[ ,where 𝜆 ∊(0, ꝏ), 𝜇𝛼(𝑢) = 

С𝛼𝑢
2−2𝛼

𝛼

𝑒
−

𝑢2

2 √2𝜋

 , С𝛼 is a constant depending 

only on 𝛼. We denote such a coordinated change in the level of  u and n by (𝑛, 𝑢)𝛼 →  ꝏ. 

  In [8], it is proved that lim
𝑛 → ꝏ

𝜎𝑛𝑛− 𝛼 = 𝑎𝛼 and, moreover, if the correlation function of the r.p. ℥0(𝑡) is such that 

𝑟′′ (𝑡)|𝑡|2−𝛼 = O(1), t  → 0, then 

lim
(𝑛,𝑢)𝜆→ ꝏ

𝑃{𝑚𝑎𝑥
|𝒕|≤𝜋

|℥0(𝑡) − 𝐷𝑛 (℥0; 𝑡)| > 𝑢𝜎𝑛} = 1–𝑒−𝜆 , 

where   𝜎𝑛
2 = {M[℥0(𝑡) − 𝐷𝑛 (℥0; 𝑡)]2}

1

2 ,  𝑎𝛼 is a constant depending only on 𝛼 . 

    These results imply that 

lim
𝑛→ ꝏ

𝑃{𝑚𝑎𝑥
|𝒕|≤𝜋

|℥0(𝑡) − 𝐷𝑛 (℥0; 𝑡)| > 𝑛− 𝛼𝑏𝛼 √𝑙𝑛 𝑛 + 
1−𝛼

𝛼
+ 𝒇𝛼,𝜆(𝑛) } = 1–𝑒−𝜆, 

where 

0 < 𝑏𝛼 < ꝏ ,   𝑓𝛼,𝜆(𝑛) = o (𝑛− 𝛼√ln 𝑛) , 𝑛 →  ꝏ.                               (5) 

   Relation (5) and Corollary 2 show that, despite the generality of the considered class of r.p.’s, the estimate in 

Theorem 1 in specific cases is close to unimprovable in the sense of order in n. 
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