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ABSTRACT 

In the work, we find sharp estimates for the root-mean-square error of the approximation of  -periodic random 

processes and random fields by linear positive Jackson operators. 

KEYWORDS 

The Jackson trigonometric polynomial (operator),  -periodic random process, random field, approximation, 

unimprovable inequality.  

INTRODUCTION 

The problem of approximation of uniformly 

continuous bounded nonrandom functions has a 

classical origin and has been known since the time of 

Newton. There are whole mathematical areas devoted 

to this theory, where the best approximations of 

continuous functions of a real and complex variable by 

interpolation and algebraic polynomials, trigonometric 

polynomials, approximations by splines, linear positive 

operators are studied, constructive characteristics of 

function classes are found, the cross-sections of 

function classes are estimated, and others [4]. [13], 

[14].  

     Methods of the approximation theory of non-

random functions are also used in the study of 

problems of approximation of random functions, 

where well-studied, simple in construction algebraic 

and trigonometric polynomials, various interpolation 

formulas are chosen as the approximation apparatus. 

This approach is applied in works by Azlarov T.A. [1], 

Drozhzhina L.V. [5], [6], Kadyrova I.I. [7], 
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Mirzakhmedov M.A., Khudaiberganov R. [8], Nagorny 

V.N., Yadrenko M.I. [9], Omarov S.O. [10], Seleznev 

O.V. [11], [12], Khudoyberganov R. [15] and others.   

MAIN RESULTS 

Denote by 𝐶Ω
2𝜋(𝑅1 ) the class of 2𝜋-periodic, 

continuous with probability one random processes 

(r.p.’s), i.e. r.p.’s ℥(𝑡) such that   ℥(𝑡) 

is continuous and  ℥(𝑡 + 2𝜋) = ℥(𝑡) for any 𝑡 ∊ 𝑅1  with 

probability one.  

     Obviously, for almost all realizarions, ℥(𝑡) ∊ 𝐿1(-

𝜋, 𝜋). Therefore, we can construct the following 

trigonometric Jackson polynomial [14]: 

𝐷𝑛 (℥; 𝑡) =  𝐷𝑛℥(𝑡) = ∫ ℥(𝑡 + 𝑥)
𝜋

−𝜋
𝐷𝑛(𝑥)𝑑𝑥 =

2𝜋∑ ℥𝑘
2𝑛−2
−(2𝑛−2) 𝜑𝑘

(𝑛)
𝑒𝑖𝑘𝑡     (1) 

where 𝐷𝑛(𝑥) =
3

2𝜋(2𝑛2+1)𝑛
(
𝑠𝑖𝑛

𝑛𝑥

2

𝑠𝑖𝑛
𝑥

2

)

4

  is the Jackson 

kernel, ℥𝑘  and  𝜑𝑘
(𝑛)

 are the Fourier coefficients of ℥(𝑡) 

and 𝐷𝑛(𝑥), respectively. 

  𝐷𝑛℥(𝑡) is a linear and positive operator (l.p.o.). 

Consider the approximation of a r.p.   ℥(𝑡) ∊  𝐶Ω
2𝜋(𝑅1 ) 

by the Jackson l.p.o. 𝐷𝑛 (℥; 𝑡). 

   Investigate the standard deviation 

𝛿𝑛(℥; 𝑡) = {𝑀[℥(𝑡) − 𝐷𝑛 (℥; 𝑡)]
2}

1

2. 

Since the r.p. ℥(𝑡) − 𝐷𝑛 (℥; 𝑡) is 2𝜋-periodic, the 

function 𝛿𝑛(℥; 𝑡) will be the same, so it suffices to study 

it on the interval [-𝜋, 𝜋]. 

     Let 𝜔℥(𝛿) = max
|𝑡−𝑠|≤𝛿

{𝑀[℥(𝑡) − ℥(𝑠)]2}
1

2 be the 

modulus of continuity of the r.p.  ℥(𝑡). 

  Theorem 1. a) For any ℥(𝑡) ∊  𝐶Ω
2𝜋(𝑅1 ) and  𝑛 ∈ 𝑁, the 

inequality  

     max
|𝑡|≤𝜋

{𝑀[℥(𝑡) − 𝐷𝑛 (℥; 𝑡)]
2}

1

2  ≤  (
4

3
−
45√3

76𝜋
) 𝜔℥(

2𝜋

𝑛
)  

   (2) 

is valid. 

b) inequality (2) is unimpovable for the class  𝐶Ω
2𝜋(𝑅1 ) 

in the sense that, for any ε > 0, there exist ℥𝜀(t) ∈

 𝐶Ω
2𝜋(𝑅1 ) and 𝑛0 ∈ 𝑁 such that  

   max
|𝑡|≤𝜋

{𝑀[℥𝜀(t)  − 𝐷𝑛0 (℥𝜀  ; 𝑡)]
2}

1

2  >  (
4

3
−
45√3

76𝜋
−

ε) 𝜔℥𝜀(
2𝜋

𝑛0
) 

        Proof of Theorem 1. First of all, we note that the 

Jackson kernel 𝐷𝑛(𝑥) has the following property: 

∫ 𝐷𝑛(𝑥)
𝜋

−𝜋
dx = 1 for any 𝑛 ∈ 𝑁 [14, p.79]. 

For any ℥(𝑡) ∊  𝐶Ω
2𝜋(𝑅1 ), 𝑛 ∈ 𝑁, and t ∈ [-𝜋, 𝜋], uisng 

the above property of 𝐷𝑛(𝑥), the Fubini theorem, and 

the Cauchy-Bunyakovsky inequality, we have  

𝛿𝑛(℥; 𝑡) = {𝑀[℥(𝑡) − 𝐷𝑛 (℥; 𝑡)]
2}

1

2 =

{𝑀[∫ (℥(𝑡) −
𝜋

−𝜋
℥(𝑡 + 𝑥))𝐷𝑛(𝑥)𝑑𝑥]

2
}
1

2 ≤ 

 ≤ ∫ 𝜔℥  (|𝑥|)
𝜋

−𝜋
 𝐷𝑛(𝑥)𝑑𝑥 . 

Using the properties of the modulus of continuity 

𝜔℥  (𝑥), we obtain from here that  

𝛿𝑛(℥; 𝑡) ≤ 2∫ 𝜔℥  (𝑥)
𝜋

0
 𝐷𝑛(𝑥)𝑑𝑥 ≤ 

2𝜔℥  (
2𝜋

𝑛
) ∫ (1 +]

𝑛𝑥

2𝜋 
[ )

𝜋

0
𝐷𝑛(𝑥)𝑑𝑥= 𝜔℥  (

2𝜋

𝑛
)𝜆𝑛, 

where 𝜆𝑛 = 2∫ (1 +]
𝑛𝑥

2𝜋 
[ )

𝜋

0
𝐷𝑛(𝑥)𝑑𝑥. 

In [10], it is shown that sup
𝑛≥1

𝜆𝑛= 𝜆3 = 
4

3
−
45√3

76𝜋
 = 

1,00688858… 
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It follows from here that 

𝛿𝑛(℥; 𝑡) ≤ (
4

3
−
45√3

76𝜋
) 𝜔℥(

2𝜋

𝑛
) 

for any ℥(𝑡) ∊  𝐶Ω
2𝜋(𝑅1 ), 𝑛 ∈ 𝑁, and t ∈ [-𝜋, 𝜋], hence,  

max
|𝑡|≤𝜋

𝛿𝑛(℥; 𝑡) ≤  (
4

3
−
45√3

76𝜋
) 𝜔℥(

2𝜋

𝑛
). 

Part a) of Theorem 1 is proved. 

To prove part b) of Theorem 1, consider an even,  2𝜋-

periodic, non-random function defined on the interval 

[0, 𝜋] in a following way: 

𝑓ε(x)=

{
 
 

 
 

𝑥

ε
   if  0 ≤  𝑥 ≤  ε,

1   if  ε ≤  𝑥 ≤
2𝜋

3
,

1 + 
1

ε
(𝑥 −

2𝜋

3
)   if  

2𝜋

3
 ≤  𝑥 ≤

2𝜋

3
+ ε,

2   if  
2𝜋

3
+ ε ≤  𝑥 ≤  𝜋

 

}
 
 

 
 

 

where ε is a sufficiently small number. 

  Let a r.v. ℥0 be such that M℥0
2 = 1.  

Obviously, the r.p.  ℥ε(t) = ℥0𝑓ε(x) ∈  𝐶Ω
2𝜋(𝑅1 ) and 

𝜔℥ε (
2𝜋

3
) = 1.   For ℥ε(t), we have 

                                max
|𝑡|≤𝜋

𝛿3(℥ε; 𝑡) ≥ 𝛿3(℥ε; 0) = 

{𝑀[∫ ℥ε(𝑥)𝐷3(𝑥)
𝜋

−𝜋
𝑑𝑥]

2
}
1

2 = 

= ∫ 𝑓ε(𝑥)𝐷3(𝑥)
𝜋

−𝜋
𝑑𝑥 = 2{∫

𝑥

ε
 𝐷3(𝑥)

ε

0
𝑑𝑥 + ∫  𝐷3(𝑥)

2𝜋

3
ε

𝑑𝑥 + 

+ ∫ [1 +
1

ε
(𝑥 −

2𝜋

3
)] 𝐷3(𝑥)

2𝜋

3
+ε

2𝜋

3

𝑑𝑥 + 2∫  𝐷3(𝑥)
𝜋
2𝜋

3
+ε

} = 

= 2[∫  𝐷3(𝑥)
2𝜋

3
0

𝑑𝑥 + 2∫  𝐷3(𝑥)
𝜋
2𝜋

3

𝑑𝑥] – 2[∫  𝐷3(𝑥)
ε

0
𝑑𝑥 −

∫
𝑥

ε
 𝐷3(𝑥)

ε

0
𝑑𝑥 ] – 

– 2[ 2∫  𝐷3(𝑥)
2𝜋

3
+ε

2𝜋

3

𝑑𝑥 − ∫ [1 +
1

ε
 (𝑥 −

2𝜋

3
+ε

2𝜋

3

2𝜋

3
)] 𝐷3(𝑥) 𝑑𝑥] = 

= 2∫  (1+]
2𝜋

3
[ )𝐷3(𝑥)

𝜋

0
𝑑𝑥 - 2∫  (1 −

𝑥

ε
) 𝐷3(𝑥)

ε

0
𝑑𝑥 – 

–2∫ [1 +
1

ε
(𝑥 −

2𝜋

3
)] 𝐷3(𝑥)

2𝜋

3
+ε

2𝜋

3

𝑑𝑥 = 𝜆3 − 𝐼ε
(1)
− 𝐼ε

(2)
 

(𝜆3 − 𝐼ε
(1)
− 𝐼ε

(2)
) 𝜔℥ε (

2𝜋

3
). 

It is obvious that 

𝐼ε
(1)

≤ 2∫  𝐷3(𝑥)
ε

0
𝑑𝑥 ⟶ 0, and    𝐼ε

(2)
≤

2∫  𝐷3(𝑥)
2𝜋

3
+ε

2𝜋

3
0

𝑑𝑥 ⟶ 0    as ε ⟶0, 

i.e. 

max
|𝑡|≤𝜋

𝛿𝑛(℥ε; 𝑡)  ≥ [𝜆3 − 𝛼(ε)] 𝜔℥ε (
2𝜋

3
) ,   𝛼(ε)  ⟶ 0  as ε 

⟶0 

where 𝛼(ε) = 𝐼ε
(1) + 𝐼ε

(2). 

This leads to the statement of Part b) of Theorem 1. 

Theorem 1 is proved. 

Theorem 2. For the class of r.p.’s   𝐶Ω
2𝜋(𝑅1 ), the relation 

s  u  p
𝑛 ∊𝑁,℥∊ 𝐶Ω

2𝜋(𝑅1 )

max
|𝑡|≤𝜋

{ M|℥(𝑡)−𝐷𝑛(℥,𝑡)|2}
1
2

𝜔℥(
2𝜋

𝑛
)

 = 
4

3
−
45√3

76𝜋
 

takes place. 

   Proof of Theorem 2 follows from Theorem 1. 

  Let us proceed to finding the sharp estimate for the 

approximation of random fields by the Jackson l.p.o.’s. 

  Denote by  𝐶Ω
2𝜋(𝑅2 ) the class of 2𝜋-periodic in each 

argument and continuous with probability one r.p.’s 

℥(𝑡, 𝑠).   

    The function  

𝜔℥
(1)

(𝑥1, 𝑥2)=

sup

|𝑡 − 𝑡′| ≤ 𝑥1
|𝑠 − 𝑠′| ≤ 𝑥2

{M|℥(𝑡, 𝑠) − ℥(𝑡′, 𝑠′)|2}
1

2,    

𝑥1, 𝑥2 ≥ 0 
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is said to be the modulus of continuity of the first type 

of a r.p. ℥(𝑡, 𝑠) ∈  𝐶Ω
2𝜋(𝑅2 ) [1], [5]. 

     The function  

𝜔℥
(2)
(𝑥) =

𝑠𝑢𝑝

(𝑡 − 𝑡′)2 + (𝑠 − 𝑠′)2 ≤ 𝑥2
 {M|℥(𝑡, 𝑠)

− ℥(𝑡′, 𝑠′)|2}
1
2 , 𝑥 ≥ 0 

is said to be the modulus of continuity of the second 

type of a r.p. ℥(𝑡, 𝑠) ∈  𝐶Ω
2𝜋(𝑅2 ). 

     The modules of continuity of a r.p.  ℥(𝑡, 𝑠) ∈

 𝐶Ω
2𝜋(𝑅2 ) have the following properties: 

10. For any 0 ≤ 𝑥1 ≤ 𝑥1
′ , 0 ≤ 𝑥2 ≤ 𝑥2

′ , the inequalities 

𝜔℥
(1)
(  𝑥1, 𝑥2) ≤ 𝜔℥

(1)
(𝑥1

′ , 𝑥2) ≤ 𝜔℥
(1)
(𝑥1
′ , 𝑥2

′ ) 

take place. 

20. 𝜔℥
(1)
( 𝑛𝑥1, 𝑛𝑥2) ≤ 𝑛𝜔℥

(1)
( 𝑥1, 𝑥2) for any n ∈ 𝑁, 0 ≤

𝑥1 ≤ 𝑥2. 

30   𝜔℥
(2)
( 𝑥1) ≤ 𝜔℥

(2)
( 𝑥2) for any 0 ≤ 𝑥1 ≤ 𝑥2. 

40. 𝜔℥
(2)
(𝑛𝑥) ≤ 𝑛𝜔℥

(2)
(𝑥) for any n ∈ 𝑁, 0 ≤ 𝑥1 ≤  𝑥2. 

50.  𝜔℥
(1)
(
√2

2
𝑥,
√2

2
𝑥) ≤ 𝜔℥

(2)(𝑥) ≤ 𝜔℥
(1)
(𝑥, 𝑥) ≤ 

𝜔℥
(2)
(𝑥√2),     x ≥ 0. 

Consider the approximation of a r.p. ℥(𝑡, 𝑠) ∈  𝐶Ω
2𝜋(𝑅2 ) 

by the Jackson l.p.o. 

     𝐷𝑛,𝑛(℥; t, s) = ∫ ∫ ℥(𝑡 + 𝑥, 𝑠 +
𝜋

−𝜋

𝜋

−𝜋

𝑦)𝐷𝑛(𝑥)𝐷𝑛(𝑦)dxdy.   (3) 

Theorem 3. a) For any ℥(𝑡, 𝑠) ∈  𝐶Ω
2𝜋(𝑅2 ) and 𝑛 ∈ 𝑁, 

the inequality  

max
|𝑡|≤𝜋
|𝑠|≤𝜋

 {𝑀|℥(𝑡, 𝑠) − 𝐷𝑛,𝑛(℥; t, s)|
2}

1

2 ≤ [2- (
2

3
−

45√3

76𝜋
)2] 𝜔℥

(1)(
2𝜋

𝑛
,
2𝜋

𝑛
)  (4) 

holds. 

b) inequality (4) is unimprovable in the following sense: 

for any ε > 0, there exist ℥𝜀(t,s) ∈  𝐶Ω
2𝜋(𝑅2 ) and 𝑛0 ∈ 𝑁 

such that  

max
 |𝑡|≤𝜋
  |𝑠|≤𝜋

{𝑀[℥𝜀(t, s) − 𝐷𝑛0,𝑛0 (℥𝜀; 𝑡, 𝑠)]
2}

1

2  > [2–(
2

3
−
45√3

76𝜋
)2 – 

ε ]𝜔℥𝜀
(1)
(
2𝜋

𝑛0
,
2𝜋

𝑛0
). 

  Proof of Theorem 3. For any ℥(𝑡, 𝑠) ∊  𝐶Ω
2𝜋(𝑅2 ), 𝑛 ∈

𝑁, and (t,s) ∈ [-𝜋, 𝜋]2, using the propertt of the Jackson 

kernels, the Fubini theorem and the Cauchy-

Bunyakovsky inequality, we have 

𝛿𝑛,𝑛(℥; 𝑡, 𝑠) ≡ {𝑀[℥(𝑡, 𝑠) − 𝐷𝑛,𝑛 (℥; 𝑡, 𝑠)]
2}

1

2 = 

= {M[∫ ∫ [℥(𝑡, 𝑠) − ℥(𝑡 + 𝑥, 𝑠 +
𝜋

−𝜋

𝜋

−𝜋

𝑦)]𝐷𝑛(𝑥)𝐷𝑛(𝑦)𝑑𝑥𝑑𝑦]
2
}
1

2  ≤ 

≤  ∫ ∫ 𝜔℥
(1)(|𝑥|, |𝑦|)

𝜋

−𝜋

𝜋

−𝜋
𝐷𝑛(𝑥)𝐷𝑛(𝑦)𝑑𝑥𝑑𝑦 ≤ 

≤ 𝜔℥
(1)(

2𝜋

𝑛
,
2𝜋

𝑛
) ∫ ∫ (1 +

𝜋

−𝜋

𝜋

−𝜋

max {]
𝑛|𝑥|

2𝜋
[, ]

𝑛|𝑦|

2𝜋
[})𝐷𝑛(𝑥)𝐷𝑛(𝑦)𝑑𝑥𝑑𝑦 = 

= 4𝜔℥
(1)(

2𝜋

𝑛
,
2𝜋

𝑛
) ∫ ∫ (1 +

𝜋

0

𝜋

0

max {]
𝑛|𝑥|

2𝜋
[, ]

𝑛|𝑦|

2𝜋
[})𝐷𝑛(𝑥)𝐷𝑛(𝑦)𝑑𝑥𝑑𝑦 = Kn 

𝜔℥
(1)(

2𝜋

𝑛
,
2𝜋

𝑛
) 

where Kn = 4∫ ∫ (1 +
𝜋

0

𝜋

0

max {]
𝑛|𝑥|

2𝜋
[, ]

𝑛|𝑦|

2𝜋
[})𝐷𝑛(𝑥)𝐷𝑛(𝑦)𝑑𝑥𝑑𝑦. 

It is obvious that K1 = K2 =1.  In [2], it is shownm that 

sup
𝑛≥1

K𝑛= K3 = 2- (
2

3
−
45√3

76𝜋
)2 = 1,0137297… . 

It follows from here the proof of part a) of Theorem 2. 
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To prove part b) of Theorem 2, consider an even 2𝜋-

periodic in each argument non-random function 

defined on [0, 𝜋]2 as follows: 

            𝑓ε(𝑡, 𝑠) =

{
 
 
 
 
 
 

 
 
 
 
 
 

𝑥

ε
   if  0 ≤ 𝑥 ≤  ε ,   0 ≤  𝑦  ≤  𝑥

𝑦

ε
   if   0 ≤ 𝑦 ≤  ε , 0 ≤  𝑥  ≤  𝑦

1   if   {

ε ≤ 𝑥 ≤
2𝜋

3
, 0 ≤  𝑦  ≤  𝑥

ε ≤ 𝑦 ≤
2𝜋

3
, 0 ≤  𝑥  ≤  𝑦
 

}

1 +
1

ε
(𝑥 −

2𝜋

3
)    if   

2𝜋

3
≤ 𝑥 ≤

2𝜋

3
+ ε,   0 ≤  𝑦  ≤  𝑥

1 +
1

ε
(𝑦 −

2𝜋

3
)    if   

2𝜋

3
≤ 𝑦 ≤

2𝜋

3
+ ε,   0 ≤  𝑥  ≤  𝑦

2   if           {

2𝜋

3
+ ε ≤ 𝑥 ≤ 𝜋,   0 ≤  𝑦  ≤  𝑥

2𝜋

3
+ ε ≤ 𝑦 ≤ 𝜋, 0 ≤  𝑥  ≤  𝑦

} 

 

}
 
 
 
 
 
 

 
 
 
 
 
 

  

where ε > 0 is a sufficiently small number. 

   Let a r.v.  ℥0 be such that M℥0
2 = 1. Then the r.p.  ℥ε(t,s) 

= ℥0𝑓ε(t,s) ∈  ∈ 𝐶Ω
2𝜋(𝑅2 ) and  𝜔℥ε (

2𝜋

3
,
2𝜋

3
) = 1. We 

obtain from here that 

max
|𝑡|≤𝜋
|𝑠|≤𝜋

𝛿𝑛,𝑛(℥ε; 𝑡, 𝑠) ≥ 𝛿3,3(℥ε; 0,0)

= ∫ ∫ 𝑓ε(𝑡, 𝑠)
𝜋

−𝜋

𝜋

−𝜋

𝐷𝑛(𝑥)𝐷𝑛(𝑦)𝑑𝑥𝑑𝑦 = 

= 4∫ ∫ 𝑓ε(𝑡, 𝑠)
𝜋

0

𝜋

0
𝐷𝑛(𝑥)𝐷𝑛(𝑦)𝑑𝑥𝑑𝑦 = 

4∑ ∬ 𝑓ε(𝑡, 𝑠)𝐴𝑘

4
𝑘=1 𝐷3(𝑥)𝐷3(𝑦)𝑑𝑥𝑑𝑦       (5) 

where  𝐴1= { (x,y) :  0 ≤ 𝑥 ≤  ε , 0 ≤ 𝑦 ≤  ε },                                                                                

   𝐴2= {(x,y): ε ≤ 𝑥 ≤
2𝜋

3
 , 0 ≤ 𝑦 ≤  𝑥}U{ (x,y): ε ≤ 𝑥 ≤

2𝜋

3
 , 0 ≤ 𝑥 ≤  𝑦}, 

   𝐴3= {(x,y): 
2𝜋

3
≤ 𝑥 ≤

2𝜋

3
 + ε, 0 ≤ 𝑦 ≤ 𝑥}U{ (x,y): 

2𝜋

3
≤

𝑦 ≤
2𝜋

3
+ ε, 0 ≤ 𝑥 ≤  𝑦}, 

   𝐴4 = {(x,y): 
2𝜋

3
+  ε ≤ 𝑥 ≤ 𝜋, 0 ≤ 𝑦 ≤ 𝑥}U{ (x,y): 

2𝜋

3
+

ε ≤ 𝑦 ≤ 𝜋, 0 ≤ 𝑥 ≤  𝑦}. 

Taking into account definition of the function 𝑓ε(𝑡, 𝑠) , 

we have 

∑ ∬ 𝑓ε(𝑡, 𝑠)𝐴𝑘

4
𝑘=1 𝐷3(𝑥)𝐷3(𝑦)𝑑𝑥𝑑𝑦 = 

∬ 𝑚𝑎𝑥 {
𝑥

ε𝐴1
,
𝑦

ε
}𝐷3(𝑥)𝐷3(𝑦)𝑑𝑥𝑑𝑦 + 

+∬ 𝐷3(𝑥)𝐷3(𝑦)𝐴2
𝑑𝑥𝑑𝑦 + 

+∬ 𝑚𝑎𝑥{1 +
1

ε
(𝑥 −

2𝜋

3
) , 1 +

1

ε
(𝑦 −

𝐴3

2𝜋

3
)}𝐷3(𝑥)𝐷3(𝑦)𝑑𝑥𝑑𝑦 + 

+2∬ 𝐷3(𝑥)𝐷3(𝑦)𝐴4
𝑑𝑥𝑑𝑦 = 

∬ 𝐷3(𝑥)𝐷3(𝑦)𝐴1U𝐴2
𝑑𝑥𝑑𝑦 +

+2∬ 𝐷3(𝑥)𝐷3(𝑦)𝐴3U𝐴4
𝑑𝑥𝑑𝑦 –−∬ (1 −

𝐴1

𝑚𝑎𝑥 {
𝑥

ε
,
𝑦

ε
})𝐷3(𝑥)𝐷3(𝑦)𝑑𝑥𝑑𝑦 – 

– ∬ (2 −𝑚𝑎𝑥 {1 +
1

ε
(𝑥 −

2𝜋

3
) , 1 +

1

ε
(𝑦 −

𝐴3

2𝜋

3
)})𝐷3(𝑥)𝐷3(𝑦)𝑑𝑥𝑑𝑦 =∫ ∫ (1 +

𝜋

0

𝜋

0

max {]
3𝑥

2𝜋
[, ]

3𝑦

2𝜋
[}) 𝐷3(𝑥)𝐷3(𝑦)𝑑𝑥𝑑𝑦 –  ∬ (1 −

𝐴1

𝑚𝑎𝑥 {
𝑥

ε
,
𝑦

ε
}𝐷3(𝑥)𝐷3(𝑦)𝑑𝑥𝑑𝑦 – 

−∬ (1 +
2𝜋

3ε
−  𝑚𝑎𝑥 {

𝑥

ε
,
𝑦

ε
})

𝐴3
𝐷3(𝑥)𝐷3(𝑦)𝑑𝑥𝑑𝑦 ≡  

1

4
 K3 - 

𝐼ε
(3)
− 𝐼ε

(4) ≥ 
1

4
 K3 - |𝐼ε

(3)| − |𝐼ε
(4)| . 

Obviously,  

|𝐼ε
(3)| ≤ ∬ 𝐷3(𝑥)𝐷3(𝑦)𝐴1

𝑑𝑥𝑑𝑦 → 0 as ε → 0, 

|𝐼ε
(4)| ≤ ∬ 𝐷3(𝑥)𝐷3(𝑦)𝐴3

𝑑𝑥𝑑𝑦 → 0 as ε → 0. 

Thus, 
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∑ ∬ 𝑓ε(𝑡, 𝑠)𝐴𝑘

4
𝑘=1 𝐷3(𝑥)𝐷3(𝑦)𝑑𝑥𝑑𝑦 ≥ K3 – β(ε),   β(ε) → 0  

as ε → 0. 

  Taking into account relation (5), we obtain from here 

that 

max
|𝑡|≤𝜋
|𝑠|≤𝜋

𝛿𝑛,𝑛(℥ε; 𝑡, 𝑠) ≥ 𝛿3,3(℥ε; 0,0) ≥  𝐾3 – β(ε) = [𝐾3 – 

β(ε)] 𝜔℥𝜀
(1)
(
2𝜋

3
,
2𝜋

3
) 

  Let ε1 > 0 be an arbitrary number. Choosng β(ε) such 

that β(ε) < ε1, we come to the assertion of the second 

part of Theorem 3. 

Theorem 3 is proved. 

Theorem 4. For the class of r.p.’s 𝐶Ω
2𝜋(𝑅2 ), the relation 

𝑠  𝑢  𝑝
𝑛 ∊𝑁 ,℥(𝑡,𝑠)∊ 𝐶Ω

2𝜋(𝑅1 )

max
(𝑡,𝑠)∊ 𝑅2 

{ M|℥(𝑡,𝑠)−𝐷𝑛,𝑛(℥;𝑡,𝑠) |2}
1
2

𝜔℥(
2𝜋

𝑛
)

 = 
4

3
−
45√3

76𝜋
 

holds. 

The proof of Theorem 4 follows from Theorem 3. 

Note that Theorems 1–4 in the case when ℥(t) and 

℥(𝑡, 𝑠) are nonrandom functions coincide with the 

results of [2] obtained there by another method. 
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