VOLUME 04 ISSUE 07 PAGES: 131-136

OCLC - 1121105677

Publisher: Oscar Publishing Services

Research Article

Website: https://theusajournals. com/index.php/ajsshr

Copyright: Original content from this work may be used under the terms of the creative commons attributes 4.0 licence.

EMERGING TRENDS IN HIGHER EDUCATION PRACTICE AND PROBLEMS IN THE DEVELOPMENT OF SCIENTIFIC ACTIVITY

Submission Date: July 21, 2024, Accepted Date: July 26, 2024,

Published Date: July 31, 2024

Crossref doi: https://doi.org/10.37547/ajsshr/Volume04Issue07-20

Hoshimov Sardorbek Nozimjon o'g'li

Foundation doctoral student, Namangan State University, Uzbekistan

ABSTRACT

This article explores the emerging trends in higher education practices and the associated challenges in fostering scientific activity among students. It examines innovative approaches such as interdisciplinary education, the integration of technology, and research-based learning while identifying key obstacles like inadequate funding, limited resources, and insufficient institutional support. The analysis aims to provide a comprehensive understanding of how these trends are shaping the landscape of scientific education and what can be done to overcome the current barriers to enhance student engagement in scientific research.

KEYWORDS

Higher education, scientific activity, interdisciplinary education, technology integration, research-based learning, funding, institutional support.

INTRODUCTION

Higher education institutions are continually evolving to meet the needs of a rapidly changing world. One significant area of focus is the development of scientific activity among students, which is crucial for fostering innovation and addressing complex global challenges. This article examines the emerging trends in higher education practices that aim to enhance scientific activity and identifies the problems that

VOLUME 04 ISSUE 07 PAGES: 131-136

OCLC - 1121105677

Publisher: Oscar Publishing Services

hinder its development. Higher education institutions play a pivotal role in advancing scientific activity, fostering innovation, and preparing students for future careers. In recent years, several emerging trends have significantly influenced higher education practices, shaping how scientific activity is conducted and developed.[1] This article examines these trends and the accompanying problems, offering insights into potential improvements and solutions.

Emerging Trends in Higher Education Practices

Interdisciplinary Education. Interdisciplinary education has gained prominence as a way to provide students with a more holistic understanding of complex issues. By integrating knowledge from various fields, students can approach scientific problems with a broader perspective.[2]

Characteristics:

- Collaboration across different academic disciplines
- Emphasis on real-world applications
- Development of critical thinking and problemsolving skills

Impact:

Enhanced ability to address multifaceted scientific questions

- Increased student engagement and motivation
- Broader understanding of scientific issues
- 2. Interdisciplinary Approaches. Interdisciplinary approaches break down traditional academic silos, encouraging collaboration across various fields to address complex scientific questions.

Key Aspects:

- Collaborative Projects: Involvement of multiple disciplines.
- Curriculum b. Interdisciplinary Courses: integrating diverse fields.
- Research Centers: Facilities promoting crossdisciplinary research.

Impact: NG SERVICES

- > Broader perspective and innovative solutions to scientific problems.
- Enhanced critical thinking and problem-solving skills.
- Increased collaboration and knowledge sharing.
- 2. Integration of Technology. The integration of technology into higher education has transformed the way scientific activity is conducted and taught.[3] Digital tools, online platforms, and virtual laboratories have expanded the possibilities for research and learning.

VOLUME 04 ISSUE 07 PAGES: 131-136

OCLC - 1121105677

Publisher: Oscar Publishing Services

Characteristics:

- Use of digital resources and online collaboration tools
- Virtual simulations and laboratories
- Enhanced data analysis and visualization capabilities

Impact:

- Improved accessibility to research tools and resources
- **Facilitated** remote and asynchronous collaboration
- Enhanced data management and analysis capabilities
- 3. New Pedagogical Models. Innovative pedagogical models have emerged to enhance student engagement and learning outcomes in scientific activity.[4]

Key Aspects:

Active Learning: Student-centered approaches such as flipped classrooms and peer instruction.

Experiential Learning: Hands-on experiences through internships, research projects, and fieldwork.

Blended Learning: Combination of online and face-to-face instruction.

Impact:

Increased student engagement and motivation.

Enhanced practical skills and real-world application of knowledge.

Improved retention and understanding of scientific concepts.

4. Research-Based Learning. Research-based learning places students at the center of the scientific process, encouraging them to engage in independent inquiry and experimentation. This approach helps develop essential research skills and fosters a deeper understanding of scientific principles.

Characteristics:

- Student-led research projects
- Emphasis on inquiry and experimentation
- Development of critical thinking and analytical skills

Impact:

- Increased student motivation and engagement
- Enhanced understanding of scientific concepts
- Development of independent research skills[5]

Problems in the Development of Scientific Activity

VOLUME 04 ISSUE 07 PAGES: 131-136

OCLC - 1121105677

Publisher: Oscar Publishing Services

1. Inadequate Funding. One of the most significant barriers to the development of scientific activity is inadequate funding. Limited financial resources restrict access to necessary equipment, materials, and opportunities for student research.[6]

Impact:

- Restricted access to research tools and resources
- Limited opportunities for conducting and presenting research
- Difficulty in attracting and retaining talented students and faculty
- 2. Limited Institutional Support. Institutional support is crucial for fostering a robust scientific culture. However, many higher education institutions lack the necessary infrastructure and support systems to effectively promote scientific activity among students.

Impact:

- Insufficient mentorship and guidance for student researchers
- Limited availability of research facilities and resources
- Lack of recognition and incentives for student research

3. Resource Constraints. Resource constraints, including limited access to modern technology and research facilities, pose significant challenges to the development of scientific activity. These constraints can hinder students' ability to conduct high-quality research.

Impact:

- Reduced opportunities for hands-on research experience
- Difficulty in keeping up with technological advancements
- Constraints on the scope and scale of research projects
- 4. Curriculum Rigidities. Curriculum rigidities can limit the flexibility needed to incorporate emerging trends such as interdisciplinary education and research-based learning. A rigid curriculum may not provide sufficient opportunities for students to engage in scientific activity.[7]

Impact:

- Limited integration of research projects into the curriculum
- Difficulty in accommodating interdisciplinary approaches

VOLUME 04 ISSUE 07 PAGES: 131-136

OCLC - 1121105677

Publisher: Oscar Publishing Services

Reduced opportunities experiential for learning

Potential Solutions and Recommendations

1. Enhanced Funding Strategies. Increasing financial support for scientific research through diversified funding sources.

Recommendations:

- Establishing partnerships with industry and government for research funding.
- Promoting fundraising campaigns and alumni contributions.
- Offering competitive grants and scholarships for student researchers.[8]
- 2. Strengthening Institutional Support. Improving infrastructure, mentorship, and administrative processes to support scientific activity.

Recommendations:

- Investing in state-of-the-art research facilities and equipment.
- Providing professional development and training for faculty mentors.
- Streamlining administrative processes to reduce bureaucratic barriers.

3. Bridging the Theoretical-Practical Gap. Integrating practical experiences with theoretical instruction to enhance learning outcomes.

Recommendations:

- Incorporating experiential learning opportunities in the curriculum.
- Establishing partnerships with industry for internships and collaborative projects.
- Encouraging faculty to adopt active and blended learning models.

CONCLUSION

The development of scientific activity in higher education is essential for fostering innovation and addressing global challenges. Emerging trends such as interdisciplinary education, technology integration, and research-based learning are reshaping the landscape of scientific education.[9] However, significant challenges remain, including inadequate funding, limited institutional support, resource constraints, and curriculum rigidities. Addressing these problems requires concerted efforts from educators, policymakers, institutions and to create environment that supports and enhances scientific activity among students. The emerging trends in higher education, such as the integration of technology, interdisciplinary approaches, and innovative pedagogical models, offer significant opportunities to

VOLUME 04 ISSUE 07 PAGES: 131-136

OCLC - 1121105677

Publisher: Oscar Publishing Services

enhance scientific activity. However, challenges such inadequate funding, insufficient institutional support, and the theoretical-practical gap must be addressed to fully realize these opportunities. By implementing the recommended strategies, higher education institutions can improve the development and effectiveness of scientific activity, preparing students for successful careers in an increasingly complex and interconnected world.

REFERENCES

- Абдулкеримов, И. 3., Е. И. Павлюченко, and A. M. Эсетова. "Современные тенденции интернационализации высшего образования." Проблемы современной экономики 3 (2012): 358-361.
- Шиндина Л. Д. Современные тенденции воспитания в системе высшего образования: проблемы и перспективы развития //Вестник Таганрогского института управления экономики. – 2021. – №. 1 (33). – С. 37-39.
- Brew, A. (2006). Research and Teaching: Beyond the Divide. Palgrave Macmillan.
- Healey, M., & Jenkins, A. (2009). Developing Undergraduate Research and Inquiry. Higher Education Academy.
- Kuh, G. D. (2008). High-Impact Educational Practices: What They Are, Who Has Access to Them, and Why They Matter. AAC&U.

- 6. Lopatto, D. (2010). Science in Solution: The Impact of Undergraduate Research on Student Learning. Research Corporation for Science Advancement.
- 7. Hunter, A.-B., Laursen, S. L., & Seymour, E. (2007). Becoming a Scientist: The Role of Undergraduate Research in Students' Cognitive, Personal, and Professional Development. Science Education, 91(1), 36-74.
- 8. Akbarali O'g'li S. F. Prospects for improving the technologies of developing legal thinking for schoolchildren (on the example of the province of Namangan) //Current research journal pedagogics. – 2023. – T. 4. – №. 01. – C. 94-97.
- Akbarali O'g'li S. F. Prospects for improving the technologies of developing legal thinking for schoolchildren (on the example of the province of Namangan) //Current research journal pedagogics. – 2023. – T. 4. – №. 01. – C. 94-97.