

The Impact Of Artificial Intelligence On Translation Practices

Seytbaeva Nilufar Amanliq qizi

Master's student in the specialty of Comparative linguistics, linguistic translation: English language, Karakalpak State University, Uzbekistan

Received: 22 October 2025; **Accepted:** 13 November 2025; **Published:** 18 December 2025

Abstract: Artificial Intelligence (AI) has increasingly transformed translation practices across professional, academic, and industrial domains. Consequently, this study investigates the impact of AI on translation efficiency, translation quality, and translator roles, with particular focus on neural machine translation (NMT) and computer-assisted translation (CAT) tools. Using a mixed-methods approach that includes a literature review, survey of professional translators, and comparative analysis, the study demonstrates that AI enhances speed, consistency, and terminological accuracy, particularly in technical and repetitive translation tasks. Nevertheless, human oversight remains essential for idiomatic expressions, cultural nuances, and stylistic refinement. Therefore, the study emphasizes the emergence of a hybrid translation model that integrates AI tools with human expertise, ensuring both efficiency and quality.

Keywords: Artificial Intelligence, Machine Translation, Neural Networks, Translation Practices, Post-Editing, CAT Tools, Translation Quality.

Introduction: In recent years, Artificial Intelligence (AI) has increasingly influenced numerous professional fields, and translation is no exception. Indeed, AI-driven tools, including neural machine translation (NMT), natural language processing (NLP), and computer-assisted translation (CAT) platforms, have reshaped traditional translation practices, which historically relied almost exclusively on human linguistic competence, cultural knowledge, and contextual understanding. Furthermore, these technologies offer translators significant advantages, such as processing large volumes of text in a shorter time, ensuring terminological consistency across documents, and reducing repetitive cognitive load.

Moreover, scholars such as Koehn and Vashee and Kaji argue that AI does not replace human translators; rather, it augments their work by improving productivity and providing tools for managing large-scale projects [1;4].

However, despite these advantages, AI systems face limitations when translating idiomatic expressions, figurative language, or culturally embedded content.

Consequently, understanding the impact of AI on translation practices, as well as its challenges and benefits, is vital for translation scholars, educators, and practitioners.

Additionally, the rise of AI has influenced translator roles, necessitating the development of new competencies, such as AI literacy, post-editing strategies, and evaluation of machine-generated outputs. Therefore, investigating the effects of AI on translation practices can provide a theoretical foundation and practical guidance for both academic research and professional applications.

Previous studies indicate that AI has gradually reshaped translation practices over the past decades. Initially, early machine translation systems were rule-based, relying on syntactic and semantic rules, and produced outputs that required extensive post-editing [6]. Subsequently, the advent of neural machine translation (NMT) by Bahdanau et al. offered context-aware translations capable of generating more fluent and coherent text [7]. Consequently, NMT has largely improved the quality of machine-generated translations compared to earlier statistical machine

translation (SMT) approaches.

In addition, computer-assisted translation (CAT) tools have been widely adopted, providing translation memory, terminology management, and consistency across large projects [5]. Nevertheless, even advanced AI-driven systems cannot fully replicate human understanding of idiomatic expressions, cultural nuances, or stylistic subtleties, emphasizing the continuing importance of human post-editing [6].

Moreover, scholars such as García and Gaspari & Way suggest that AI has altered translator roles, moving them from primary creators to post-editors, reviewers, and quality controllers. This shift requires proficiency with AI systems, understanding automated error patterns, and maintaining stylistic and cultural appropriateness. Therefore, a hybrid translation model, integrating human expertise with AI efficiency, has emerged as the most effective approach for contemporary translation practices [2].

Furthermore, existing research highlights that AI can enhance workflow efficiency while simultaneously raising new challenges related to ethics, authorship, and professional identity. Thus, a comprehensive evaluation of AI's impact on translation must consider both technological benefits and human-centered considerations.

METHODOLOGY

To examine AI's impact on translation practices, a mixed-methods approach was employed. Firstly, a systematic literature review was conducted, analyzing peer-reviewed articles, industry reports, and case studies focusing on AI-driven translation tools, neural networks, and CAT systems. This step ensured that the study incorporated both historical and contemporary perspectives on AI in translation.

Secondly, an online survey was distributed to 75 professional translators across multiple language pairs and domains. The survey assessed translators' experiences with AI-assisted tools, including NMT platforms, CAT software, and post-editing workflows.

Table 1. Comparison of Translation Workflows: Human vs. AI-assisted

Aspect	Human Translation	AI-assisted Translation
Speed	Moderate	High
Consistency	Variable	High
Cultural/contextual accuracy	High	Moderate
Translator role	Creator	Post-editor/Reviewer

Terminology management	Manual	Automated with CAT tools
------------------------	--------	--------------------------

Table 2. Morphological and Structural Features of AI-assisted Translation

Feature	Example	Observation
Sentence reordering	“He gave her the book” → “The book was given to her by him”	Preserves meaning, requires style adjustment
Terminology consistency	Legal term: “contractual obligation”	Maintains uniformity across documents
Idiomatic handling	“Kick the bucket”	Literal translation often inaccurate; post-editing needed
Speed per 1000 words	Human: 4–5 hours; AI-assisted: 2–2.5 hours	Efficiency gains evident

Furthermore, survey data showed that 82% of translators found AI tools helpful for repetitive tasks, whereas 67% emphasized the importance of human post-editing for idiomatic, culturally sensitive, or stylistically complex texts. Consequently, these findings highlight both the advantages and limitations of AI in real-world translation practice.

DISCUSSION

The findings confirm that AI improves translation efficiency, consistency, and terminological management, particularly in technical and repetitive tasks. Nevertheless, human intervention remains essential for idiomatic expressions, stylistic choices, and culturally nuanced content. Therefore, a hybrid translation model, combining AI assistance with human oversight, is currently the most effective approach.

Moreover, the study emphasizes the need for evolving translator skills, including AI literacy, post-editing strategies, and critical evaluation of machine-generated output. In addition, ethical considerations, such as authorship, data privacy, and reliance on automated translations, require careful attention to ensure responsible and high-quality translation practices.

Consequently, AI should be regarded as a complementary tool rather than a replacement for human translators, highlighting the importance of collaboration between intelligent systems and human expertise. Furthermore, hybrid models can optimize translation workflows while preserving quality,

creativity, and cultural fidelity.

CONCLUSION

In conclusion, AI has fundamentally transformed translation practices by enhancing efficiency, consistency, and productivity. However, human oversight remains critical for idiomatic, cultural, and stylistic accuracy. Hence, translation training programs must integrate AI literacy, post-editing techniques, and hybrid workflow management to prepare translators for AI-assisted practices. Moreover, the study highlights that hybrid translation models offer the best combination of AI efficiency and human expertise, ensuring high-quality outputs. Finally, future research should explore AI's application in low-resource languages, specialized domains, and cross-cultural contexts to further optimize hybrid translation practices.

REFERENCES

1. Ahmed, M. (2023). Enhancing the Performance of NMT Models Using the Data-Based Domain Adaptation Technique for Patent Translation (Master's thesis, The University of Western Ontario (Canada)).
2. Gaspari, F. (2024). The History of Translation Technologies. In The Routledge Handbook of the History of Translation Studies (pp. 324-338). Routledge.
3. Hutchins, J. (2005). The history of machine translation in a nutshell. Retrieved December, 20(2009), 1-1.

4. Koehn, P. (2009, December). Human translation and machine translation. In IWSLT.
5. Meng, F., Lu, Z., Li, H., & Liu, Q. (2016). Interactive attention for neural machine translation. arXiv preprint arXiv:1610.05011.
6. O'Brien, S. (2012). Translation as human–computer interaction. *Translation spaces*, 1(1), 101-122.
7. Toral, A., Wieling, M., & Way, A. (2018). Post-editing effort of a novel with statistical and neural machine translation. *Frontiers in Digital Humanities*, 5, 9.