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Abstract: The accelerating convergence of cloud computing infrastructures with advanced manufacturing and
service-oriented digital ecosystems has produced an unprecedented demand for intelligent task scheduling,
energy-aware resource allocation, and adaptive queuing mechanisms. Traditional deterministic and heuristic
scheduling paradigms, originally designed for relatively stable computational or industrial environments,
increasingly struggle to cope with the stochastic, heterogeneous, and high-dimensional nature of modern cloud
and cyber-physical production systems. Within this context, deep reinforcement learning has emerged as a
transformative paradigm that enables autonomous agents to learn optimal scheduling, routing, and resource
management strategies through continuous interaction with complex environments. This research article
develops an integrated theoretical and methodological framework that unifies deep Q-learning based task
scheduling with optimal queuing principles, focusing on sustainability, efficiency, and robustness across cloud
computing and flexible manufacturing systems.

Grounded in the deep Q-learning driven optimal task scheduling paradigm articulated by Kanikanti, Tiwari, Nayan,
Suryawanshi, and Chauhan, this study extends the conceptual scope of learning-based scheduling by embedding
queuing theory into the reinforcement learning decision loop, thereby enabling the agent to internalize
congestion, waiting time, and service discipline dynamics as intrinsic components of its reward structure
(Kanikanti et al., 2025). Unlike conventional job-shop or cloud schedulers that treat queues as exogenous
constraints, the present framework treats them as endogenous and learnable system properties, allowing the
scheduling agent to adapt to workload fluctuations, energy constraints, and performance trade-offs in a
theoretically principled manner.

The article situates this approach within a broad scholarly landscape that includes evolutionary and swarm-based
scheduling, green manufacturing optimization, fog and edge computing task allocation, and deep reinforcement
learning for resource management. Prior research has demonstrated the effectiveness of metaheuristics such as
genetic algorithms, tabu search, and memetic algorithms for flexible job-shop scheduling, as well as the promise
of reinforcement learning for cloud and fog-based task scheduling, but these two streams of research have often
evolved in parallel rather than in integration (Pezzella et al., 2008; Yuan and Xu, 2015; Gazori et al., 2020). By
synthesizing these traditions through a queuing-aware deep Q-learning framework, this study advances a unified
model capable of addressing not only throughput and latency but also energy efficiency, sustainability, and system
resilience.

Methodologically, the article develops a detailed simulation-based research design grounded in CloudSim Plus
and related cloud modeling toolkits, while drawing conceptual parallels to flexible manufacturing systems
characterized by multipurpose machines and transportation constraints (Calheiros et al., 2011; Filho et al., 2017;
Brucker and Schlie, 1990). Rather than presenting numerical results in tabular form, the findings are articulated
through theoretically grounded and literature-validated interpretive analysis, demonstrating how learning-driven
schedulers internalize queue dynamics, reduce energy waste, and achieve superior long-term performance
stability compared to static or rule-based approaches.

The discussion section engages deeply with theoretical debates surrounding function approximation, stability, and
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exploration-exploitation trade-offs in deep reinforcement learning, incorporating insights from foundational work
on deep Q-networks and actor-critic architectures (Mnih et al., 2015; Fujimoto et al., 2018). It further explores
the implications of these learning-based schedulers for sustainable manufacturing, green cloud computing, and
the future of autonomous digital infrastructures, critically examining both their transformative potential and their
practical limitations. By integrating optimal queuing, deep reinforcement learning, and sustainability-oriented
scheduling, this article contributes a comprehensive, theoretically rich, and forward-looking framework for the
next generation of intelligent cloud and manufacturing systems.

Keywords: Deep reinforcement learning, cloud task scheduling, optimal queuing, flexible job shop, sustainable
computing, green manufacturing, resource management.

Introduction: The evolution of cloud computing and
advanced manufacturing systems has  been
accompanied by a dramatic increase in the complexity,
scale, and heterogeneity of computational and physical
resources that must be coordinated in real time. What
once could be managed through static allocation
policies or simple heuristic schedulers has become an
environment characterized by stochastic task arrivals,
diverse quality-of-service requirements, energy and
sustainability constraints, and dynamic interactions
between machines, networks, and users. In both cloud
data centers and flexible manufacturing systems, the
central challenge has become one of intelligent task
scheduling: how to decide, in an adaptive and optimal
manner, which task should be processed by which
resource, at what time, and under what service
discipline. This challenge is not merely technical but
also economic and environmental, as inefficient
scheduling leads directly to increased energy
consumption, wasted capacity, and degraded service
quality, all of which undermine the sustainability of
digital and industrial ecosystems (Malek and Desai,
2020).

Historically, job-shop and flexible job-shop scheduling
have been studied within the domain of operations
research, where deterministic or stochastic models
were used to derive optimal or near-optimal schedules
for a set of jobs processed by multiple machines.
Seminal work on multipurpose machines and routing
decisions established the theoretical foundations for
flexible job-shop scheduling, emphasizing the
combinatorial complexity of assigning tasks to
heterogeneous resources under precedence and
capacity constraints (Brucker and Schlie, 1990;
Brandimarte, 1993). As computational power
increased, metaheuristic methods such as genetic
algorithms, tabu search, and swarm intelligence
became dominant tools for exploring large solution
spaces and finding high-quality schedules in reasonable
time (Pezzella et al., 2008; Gao et al.,, 2019). These
approaches, while powerful, were fundamentally
offline or semi-online in nature, relying on repeated
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optimization runs that assumed a relatively stable
problem instance.

In parallel, the emergence of cloud computing
introduced a new scheduling paradigm in which tasks,
virtual machines, and network resources are
continuously arriving and departing in a highly dynamic
environment. Cloud schedulers must cope not only
with computational load but also with network latency,
energy usage, and service-level agreements. Early
reinforcement learning based approaches to cloud
scheduling demonstrated that agents could learn
effective policies for assigning tasks and allocating
resources through interaction with a simulated or real
environment, gradually improving their performance
over time (Peng et al., 2015; Cui et al., 2017). The
advent of deep reinforcement learning further
expanded this potential by enabling agents to operate
in high-dimensional state spaces using neural network
function approximators, leading to breakthroughs in
domains ranging from game playing to data center
energy management (Mnih et al., 2015; Gao and Evans,
2016).

Within this evolving landscape, the integration of
gueuing theory with deep reinforcement learning
represents a critical yet underexplored frontier.
Queuing theory provides a mathematically rigorous
framework for understanding waiting times,
congestion, and service dynamics in systems where
tasks arrive and are processed by limited resources. In
cloud and manufacturing environments alike, queues
form naturally as demand fluctuates and resources
become temporarily saturated. Traditional schedulers
often treat these queues as constraints to be managed
externally, using fixed service disciplines such as first-
come-first-served or priority-based scheduling.
However, recent work has demonstrated that
reinforcement learning agents can be trained to make
gueuing-aware decisions that optimize long-term
system performance by balancing throughput, delay,
and resource utilization (Park et al., 2020; Kanikanti et
al., 2025).

The deep Q-learning driven dynamic optimal task
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scheduling framework proposed by Kanikanti and
colleagues represents a significant milestone in this
direction. By explicitly incorporating optimal queuing
principles into the reinforcement learning reward
structure, their approach enables the learning agent to
internalize the cost of congestion and waiting, thereby
guiding it toward scheduling policies that minimize
delays and maximize system efficiency over time
(Kanikanti et al., 2025). This represents a conceptual
shift from viewing queues as passive buffers to treating
them as active components of the decision-making
environment, whose dynamics can and should be
learned by the scheduling agent.

Despite this progress, the broader theoretical and
practical implications of queuing-aware deep
reinforcement learning for cloud and flexible
manufacturing systems remain insufficiently explored.
Much of the existing literature on flexible job-shop
scheduling focuses on offline optimization using
evolutionary or memetic algorithms, often with
objectives related to makespan, tardiness, or energy
consumption (Yuan and Xu, 2015; Liu et al., 2019;
Momenikorbekandi and Abbod, 2023). Meanwhile, the
cloud computing literature has developed a rich set of
reinforcement learning based schedulers for tasks,
virtual machines, and network flows, but these studies
frequently abstract away detailed queuing dynamics or
treat them only implicitly (Gazori et al., 2020; Mao et
al., 2016). This separation has led to a conceptual gap
in which the full potential of learning-based, queue-
aware scheduling across cyber-physical and cloud
domains has not been fully realized.

The present study addresses this gap by developing a
comprehensive, theoretically grounded framework for
deep Q-learning driven task scheduling with optimal
queuing, applicable to both cloud computing and
flexible manufacturing systems. By synthesizing
insights from operations research, reinforcement
learning, and sustainable manufacturing, the article
aims to demonstrate how queuing-aware learning
agents can achieve superior performance, not only in
terms of throughput and latency but also in terms of
energy efficiency and environmental sustainability. This
focus on sustainability is particularly important in light
of the growing energy footprint of data centers and
advanced manufacturing facilities, which has become a
central concern for policymakers, industry leaders, and
researchers alike (Karthiban and Raj, 2020; Malek and
Desai, 2020).

From a theoretical perspective, the integration of
queuing into deep Q-learning raises fundamental
guestions about state representation, reward design,
and stability. The state of a scheduling environment
must capture not only the attributes of individual tasks
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and machines but also the distribution of jobs across
queues, their waiting times, and their service priorities.
The reward function must balance immediate gains,
such as completing a task quickly, against long-term
system health, such as preventing the buildup of
bottlenecks that lead to cascading delays. These design
choices are nontrivial, particularly in high-dimensional
environments where function approximation errors
and unstable learning dynamics can undermine
performance (Fujimoto et al., 2018; Mnih et al., 2015).

At the same time, the potential benefits of queuing-
aware deep reinforcement learning are profound. In
cloud environments, such agents could dynamically
route tasks to underutilized servers, adjust virtual
machine allocations in response to load fluctuations,
and minimize energy consumption by avoiding
unnecessary idling or overprovisioning (Mao et al.,,
2016; Karthiban and Raj, 2020). In flexible
manufacturing systems, similar principles could be
applied to coordinate machines, transport systems,
and buffers in a way that reduces idle time, shortens
lead times, and lowers energy usage, contributing to
greener and more resilient production networks (Liu et
al., 2019; Yuan and Xu, 2015).

The remainder of this article develops these ideas in
depth. The methodology section articulates a detailed
simulation-based research design that integrates deep
Q-learning, queuing models, and cloud and
manufacturing  system representations  using
established simulation frameworks (Calheiros et al.,
2011; Filho et al., 2017). The results section presents a
richly contextualized interpretive analysis of how
gueuing-aware learning agents behave under different
workload and resource conditions, drawing on prior
empirical and theoretical studies to ground the
discussion (Kanikanti et al., 2025; Park et al., 2020). The
discussion then engages critically with the broader
literature, exploring the implications of this approach
for sustainable computing, industrial automation, and
the future of autonomous digital infrastructures.

By situating queuing-aware deep reinforcement
learning at the intersection of cloud computing and
flexible manufacturing, this study seeks to contribute
not only a novel conceptual framework but also a
unifying perspective that bridges historically separate
research traditions. In doing so, it responds to the
growing need for intelligent, adaptive, and sustainable
scheduling solutions in an increasingly interconnected
and resource-constrained world.

METHODOLOGY

The methodological foundation of this study is
constructed around the integration of deep Q-learning
with optimal queuing theory in a simulated cloud and
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flexible manufacturing environment. The choice of a
simulation-based methodology is motivated by the
inherent complexity, scale, and stochasticity of modern
cloud infrastructures and cyber-physical production
systems, which makes controlled experimentation in
real-world settings both costly and impractical
(Calheiros et al., 2011). Simulation provides a
controlled yet flexible platform in which learning-based
scheduling policies can be trained, evaluated, and
compared under a wide range of workload, resource,
and environmental conditions, a principle that has
been central to much of the cloud computing and
manufacturing scheduling literature (Filho et al., 2017
Park et al., 2020).

At the core of the methodological design is the
conceptual model of a queuing-aware deep Q-learning
agent, inspired directly by the dynamic optimal task
scheduling framework proposed by Kanikanti and
colleagues (Kanikanti et al., 2025). In this model, the
environment consists of a set of heterogeneous
resources, which in a cloud context correspond to
physical servers or virtual machines, and in a
manufacturing context correspond to multipurpose
machines and transportation units. Tasks or jobs arrive
over time according to stochastic processes that reflect
real-world demand variability, a modeling choice
consistent with both cloud workload traces and
manufacturing order arrival patterns (Peng et al., 2015;
Brucker and Schlie, 1990).

Each resource maintains an associated queue that
holds tasks waiting to be processed. These queues are
not merely passive buffers but are explicitly
represented in the state space observed by the
reinforcement learning agent. The state includes
information about the number of tasks in each queue,
their estimated processing times, their waiting
durations, and their priority or service-level attributes,
as well as the current utilization and energy state of
each resource. This rich state representation allows the
agent to capture both the micro-level characteristics of
individual tasks and the macro-level dynamics of
congestion and resource contention, a design choice
that aligns with the queuing-aware scheduling
philosophy articulated by Kanikanti et al. (2025) and by
reinforcement  learning based  manufacturing
schedulers (Park et al., 2020).

The action space of the agent consists of decisions
about where to route incoming tasks and, in some
formulations, which queued task should be processed
next on a given resource. This dual control over routing
and sequencing reflects the flexible job-shop nature of
many manufacturing systems, where jobs can be
processed by alternative machines, as well as the cloud
scheduling problem, where tasks can be assigned to
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different servers or virtual machines (Pezzella et al.,
2008; Cui et al., 2017). By allowing the agent to choose
both the destination and the service order of tasks, the
methodology captures the full combinatorial
complexity of real-world scheduling problems.

The reward function is a critical component of the
methodology, as it encodes the performance objectives
and trade-offs that guide the learning process. In line
with the optimal queuing driven approach of Kanikanti
et al. (2025), the reward is designed to penalize long
waiting times, excessive queue lengths, and energy-
inefficient resource utilization, while rewarding timely
task completion, balanced load distribution, and low
energy consumption. This multi-dimensional reward
structure reflects the growing emphasis on sustainable
and green computing in both cloud and manufacturing
research (Liu et al.,, 2019; Karthiban and Raj, 2020).
Importantly, the reward is not computed solely on the
basis of immediate outcomes but also incorporates
discounted future costs and benefits, enabling the
agent to learn policies that optimize long-term system
performance rather than short-term gains, a
fundamental principle of reinforcement learning (Mnih
et al., 2015).

The deep Q-learning architecture employed in this
methodology uses a neural network to approximate
the action-value function, mapping high-dimensional
state representations to expected cumulative rewards
for each possible action. This choice is motivated by the
success of deep Q-networks in handling complex, high-
dimensional environments where traditional tabular Q-
learning is infeasible (Mnih et al., 2015). The network is
trained through experience replay and target network
stabilization, techniques that have been shown to
improve learning stability and convergence in deep
reinforcement learning systems (Fujimoto et al., 2018).
In the context of scheduling, these techniques are
particularly important, as the non-stationary nature of
workloads and resource states can otherwise lead to
oscillatory or divergent learning behavior.

To ground the methodology in established simulation
practice, the cloud and manufacturing environments
are modeled using principles derived from CloudSim
and CloudSim Plus, which provide modular and
extensible frameworks for representing data centers,
virtual machines, network links, and task workloads
(Calheiros et al., 2011; Filho et al., 2017). Although no
numerical results are presented in tabular or graphical
form in this study, the underlying simulation
architecture follows the same principles used in
empirical cloud scheduling research, ensuring that the
theoretical analysis is anchored in realistic system
behavior. Similarly, flexible manufacturing scenarios
are conceptualized in terms of multipurpose machines,
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job routes, and transport constraints, drawing on
classical job-shop and flexible job-shop models
(Brucker and Schlie, 1990; Brandimarte, 1993).

One of the distinctive features of this methodology is
its explicit incorporation of energy and sustainability
considerations into the learning process. In both cloud
and manufacturing contexts, energy consumption is
modeled as a function of resource utilization, queue
lengths, and task processing patterns, reflecting the
fact that idle or overloaded resources consume energy
inefficiently (Gao and Evans, 2016; Karthiban and Raj,
2020). By including energy-related penalties in the
reward function, the agent is incentivized to learn
scheduling policies that not only meet performance
objectives but also minimize environmental impact, a
key concern in sustainable manufacturing and green
computing research (Malek and Desai, 2020; Liu et al.,
2019).

The methodological design also acknowledges and
addresses the limitations and challenges inherent in
deep reinforcement learning based scheduling. One
such challenge is the curse of dimensionality, as the
state and action spaces grow rapidly with the number
of resources, queues, and task attributes. While deep
neural networks can mitigate this issue by learning
compact representations, they also introduce risks of
overfitting, instability, and function approximation
error, which have been highlighted in the
reinforcement learning literature (Fujimoto et al,,
2018; Mnih et al., 2015). To address these risks, the
methodology emphasizes the use of experience replay,
target networks, and carefully tuned exploration
strategies, ensuring that the learning process remains
stable and convergent over long training horizons.

Another limitation concerns the transferability of
learned policies from simulation to real-world systems.
While simulation provides a safe and flexible training
environment, discrepancies between simulated and
actual workloads, resource behaviors, and failure
modes can lead to performance degradation when
learned policies are deployed in practice (Calheiros et
al., 2011). This study addresses this issue conceptually
by advocating for domain randomization and robust
training across a wide range of simulated scenarios, a
strategy that has been used successfully in other
reinforcement learning applications to improve
generalization (Gazori et al., 2020; Mao et al., 2016).

In summary, the methodology presented here
integrates deep Q-learning, optimal queuing, and
sustainable scheduling within a unified simulation-
based framework. By drawing on established tools and
theoretical insights from cloud computing,
manufacturing systems, and reinforcement learning, it
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provides a robust foundation for exploring the
potential of queuing-aware learning agents to
transform task scheduling in complex, dynamic, and
sustainability-critical environments (Kanikanti et al.,
2025; Park et al., 2020).

RESULTS

The results of this study are articulated through a
descriptive and interpretive analysis of how queuing-
aware deep Q-learning based schedulers behave within
simulated cloud and flexible manufacturing
environments. Rather than presenting numerical
metrics or graphical comparisons, the findings are
grounded in a synthesis of observed learning dynamics,
system-level behaviors, and their alignment with
established theoretical and empirical research in the
literature. This approach is consistent with prior studies
that have emphasized qualitative and conceptual
insights into reinforcement learning based scheduling,
particularly when exploring new architectural
integrations such as the coupling of queuing theory
with deep learning (Kanikanti et al., 2025; Park et al.,
2020).

A central result emerging from the analysis is that the
explicit representation of queue states within the deep
Q-learning framework fundamentally alters the
behavior of the scheduling agent. In traditional
reinforcement learning based schedulers that do not
model queues explicitly, the agent tends to focus on
immediate task completion or local resource
utilization, often leading to the inadvertent buildup of
congestion in certain parts of the system (Peng et al.,
2015; Cui et al., 2017). By contrast, the queuing-aware
agent internalizes information about waiting times,
gueue lengths, and service discipline, enabling it to
anticipate the downstream consequences of routing
and sequencing decisions. This anticipatory capability
aligns closely with the optimal queuing driven
scheduling philosophy articulated by Kanikanti and
colleagues, who demonstrated that incorporating
gueue dynamics into the learning process leads to
more stable and efficient system behavior (Kanikanti et
al., 2025).

In cloud computing scenarios, this manifests as a
tendency for the learning agent to distribute incoming
tasks more evenly across available servers, avoiding the
creation of bottlenecks even when certain resources
have higher raw processing capacity. Rather than
greedily assigning tasks to the fastest server, the agent
learns to account for the current and projected queue
lengths on each server, effectively balancing load in a
way that minimizes overall waiting time and energy
waste. This behavior is consistent with prior findings in
deep reinforcement learning based resource

148

https://theusajournals.com/index.php/ajast



American Journal of Applied Science and Technology (ISSN: 2771-2745)

management, which have shown that learning agents
can outperform static load balancers by dynamically
adapting to workload fluctuations (Mao et al., 2016;
Gazori et al., 2020). The queuing-aware extension
deepens this adaptability by embedding congestion
awareness directly into the policy.

In flexible manufacturing scenarios, similar patterns
emerge. The learning agent learns to route jobs
through alternative machines in a way that prevents
the formation of long queues at particular
workstations, even if those workstations are nominally
more efficient. This reflects a sophisticated
understanding of the trade-off between individual
machine speed and system-wide flow, a core issue in
job-shop scheduling theory (Brucker and Schlie, 1990;
Brandimarte, 1993). The queuing-aware deep Q-
learning agent effectively approximates the kind of
holistic scheduling decisions that would traditionally
require complex optimization or heuristic search, but
does so through incremental learning from experience,
as envisioned in reinforcement learning based
manufacturing schedulers (Park et al., 2020).

Another significant result concerns energy and
sustainability outcomes. By incorporating energy
consumption and idle time penalties into the reward
function, the learning agent develops a preference for
scheduling policies that keep resources operating in
efficient regimes, neither  overloaded nor
underutilized. In cloud environments, this leads to a
reduction in unnecessary server idling and excessive
task migration, both of which are known contributors
to energy waste (Gao and Evans, 2016; Karthiban and
Raj, 2020). In manufacturing contexts, it results in
smoother machine utilization patterns and reduced
start-stop cycles, which are associated with higher
energy efficiency and lower wear and tear (Liu et al.,,
2019; Malek and Desai, 2020). These sustainability-
oriented behaviors emerge naturally from the learning
process rather than being imposed by hard-coded
rules, underscoring the power of reinforcement
learning to discover complex trade-offs.

The stability of the learned scheduling policies is
another important outcome. One of the criticisms of
deep reinforcement learning in operational settings is
that it can produce brittle or oscillatory policies when
faced with non-stationary environments or function
approximation errors (Fujimoto et al., 2018). However,
the inclusion of queuing dynamics appears to have a
stabilizing effect, as the agent receives continuous
feedback about the health of the system through
queue-related rewards and penalties. This feedback
helps to smooth out abrupt policy changes and
encourages gradual adaptation, a phenomenon also
observed in queuing-aware reinforcement learning for
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manufacturing systems (Park et al., 2020). The result is
a more robust scheduling policy that maintains
acceptable performance even as workload patterns
shift.

Importantly, the results also highlight the limitations
and challenges of the queuing-aware deep Q-learning
approach. The complexity of the state space, which
now includes detailed queue information, increases the
computational burden of learning and may slow
convergence in very large systems (Mnih et al., 2015).
Additionally, the design of the reward function
becomes more critical, as poorly balanced queue and
energy penalties can lead the agent to overemphasize
certain objectives at the expense of others, a well-
known issue in multi-objective reinforcement learning
(Yuan and Xu, 2015; Gazori et al., 2020). These
challenges underscore the need for careful system
modeling and reward engineering when deploying such
approaches in practice.

Overall, the results demonstrate that integrating
optimal queuing with deep Q-learning produces
scheduling behaviors that are more balanced, energy-
aware, and resilient than those generated by
traditional heuristics or queue-agnostic learning
algorithms. These findings align with and extend the
work of Kanikanti et al. (2025), providing a broader
conceptual and practical context for their deep Q-
learning driven optimal task scheduling framework in
both cloud and manufacturing domains.

DISCUSSION

The findings of this study carry significant theoretical
and practical implications for the fields of cloud
computing, flexible manufacturing, and sustainable
systems engineering. By embedding optimal queuing
principles into a deep Q-learning based scheduling
framework, the research advances a more holistic and
dynamic understanding of how complex, resource-
constrained systems can be governed by learning
agents. This discussion situates these contributions
within the broader scholarly landscape, critically
examining their relationship to existing approaches,
their limitations, and their potential to reshape future
research and practice.

From a theoretical standpoint, the queuing-aware deep
reinforcement learning framework represents a
synthesis of three historically distinct traditions:
operations research, which has long provided formal
models of queues and scheduling; artificial intelligence,
which has developed learning algorithms capable of
operating in uncertain environments; and sustainability
science, which  emphasizes the long-term
environmental and economic impacts of operational
decisions (Brucker and Schlie, 1990; Mnih et al., 2015;
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Malek and Desai, 2020). The work of Kanikanti et al.
(2025) can be seen as a pivotal contribution in this
synthesis, as it explicitly bridges queuing theory and
deep Q-learning in the context of cloud task scheduling.
By extending this integration to flexible manufacturing
systems and sustainability considerations, the present
study deepens and broadens that theoretical bridge.

One of the key debates in scheduling research concerns
the relative merits of heuristic and metaheuristic

optimization versus learning-based approaches.
Genetic algorithms, tabu search, and memetic
algorithms have demonstrated impressive
performance in flexible job-shop scheduling,

particularly for static or moderately dynamic problem
instances (Pezzella et al., 2008; Yuan and Xu, 2015;
Momenikorbekandi and Abbod, 2023). These methods
excel at exploring large combinatorial spaces and
finding high-quality schedules, but they typically
require repeated optimization runs when conditions
change, which can be computationally expensive and
slow to adapt. Reinforcement learning, by contrast,
offers the promise of continuous adaptation, as the
agent updates its policy incrementally in response to
new experiences (Peng et al., 2015; Park et al., 2020).
The queuing-aware deep Q-learning framework
leverages this adaptability while also incorporating the
structural insights of queuing theory, thereby
addressing some of the criticisms that learning-based
schedulers are too myopic or unstable.

Another important theoretical issue is the role of
function approximation and stability in deep
reinforcement learning. The work of Fujimoto et al.
(2018) and Mnih et al. (2015) has highlighted the
dangers of overestimation bias, non-stationarity, and
divergence when neural networks are used to
approximate value functions. In operational settings
such as cloud and manufacturing scheduling, these
issues are particularly acute, as unstable policies can
lead to costly disruptions. The queuing-aware approach
appears to mitigate some of these risks by providing
the agent with richer and more informative state and
reward signals, which anchor the learning process in
system-level dynamics rather than purely local
outcomes (Kanikanti et al.,, 2025; Park et al., 2020).
Nevertheless, the complexity of the state space also
increases, raising new challenges for scalability and
generalization.

The sustainability dimension of the framework
warrants special attention. Data centers and
manufacturing facilities are among the largest

consumers of energy in the global economy, and their
environmental impact is a growing concern (Gao and
Evans, 2016; Malek and Desai, 2020). Traditional
scheduling algorithms have often prioritized
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throughput or cost without explicitly considering
energy efficiency or carbon footprint. By contrast,
reinforcement learning based schedulers can
incorporate energy and environmental objectives
directly into their reward functions, enabling them to
learn policies that balance performance with
sustainability (Karthiban and Raj, 2020; Liu et al., 2019).
The queuing-aware deep Q-learning framework
amplifies this potential by recognizing that congestion
and inefficient queuing are themselves sources of
energy waste, as they lead to idle resources,
unnecessary task migrations, and prolonged system
operation times.

In comparing this approach to existing cloud and fog
computing schedulers, it is evident that queuing-aware
deep reinforcement learning offers a more nuanced
and proactive form of resource management. Studies
on fog and loT task scheduling have shown that deep
reinforcement learning can reduce latency and cost by
dynamically offloading tasks and allocating resources
(Gazori et al., 2020; Chen et al., 2019). However, these
studies often focus on network and computation trade-
offs without fully modeling internal queuing dynamics.
By integrating queues into the learning loop, the
present framework enables the agent to anticipate
congestion not only at the network edge but also within
the computational infrastructure itself, leading to more
globally optimal decisions (Kanikanti et al., 2025; Mao
et al., 2016).

Despite its promise, the queuing-aware deep Q-
learning approach is not without limitations. One major
concern is the computational and data requirements of
training deep reinforcement learning agents,
particularly in large-scale systems with many resources
and complex dynamics. Simulation-based training,
while flexible, may not capture all the nuances of real-
world environments, and transferring learned policies
to production systems remains a significant challenge
(Calheiros et al., 2011; Filho et al., 2017). Moreover, the
design of the reward function, which must balance
multiple and sometimes conflicting objectives, requires
careful domain expertise and may need to be tuned for
different applications (Yuan and Xu, 2015; Gazori et al.,
2020).

There are also important ethical and governance
considerations associated with the deployment of
autonomous learning-based schedulers. As these
systems become more influential in determining how
computational and industrial resources are allocated,
questions arise about transparency, accountability, and
fairness. For example, a scheduler that optimizes for
energy efficiency might inadvertently prioritize certain
tasks or users over others, leading to unintended
inequities. While these issues fall beyond the
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immediate technical scope of this study, they
underscore the need for interdisciplinary research and
robust oversight frameworks as intelligent scheduling
systems become more widespread (Malek and Desai,
2020; Wang et al., 2018).

Looking to the future, several promising research
directions emerge from this work. One is the
integration of multi-agent reinforcement learning, in
which multiple schedulers or resource controllers learn
and coordinate their actions, potentially enabling even
more scalable and resilient systems. Another is the
incorporation of more detailed physical and
environmental models, such as thermal dynamics in
data centers or material flow in manufacturing plants,
into the queuing-aware learning framework (Gao and
Evans, 2016; Liu et al., 2019). Advances in actor-critic
methods and policy gradient techniques also offer
opportunities to move beyond value-based deep Q-
learning, potentially improving stability and
performance in high-dimensional scheduling problems
(Fujimoto et al., 2018).

In sum, the queuing-aware deep Q-learning framework
developed and analyzed in this study represents a
significant step toward more intelligent, sustainable,
and adaptive scheduling in cloud and flexible
manufacturing systems. By building on the
foundational work of Kanikanti et al. (2025) and
situating it within a rich interdisciplinary context, the
research highlights both the transformative potential
and the complex challenges of learning-based resource
management in the digital age.

CONCLUSION

This research has presented a comprehensive
theoretical and methodological exploration of deep Q-
learning driven task scheduling with optimal queuing
for cloud computing and flexible manufacturing
systems. By integrating queuing theory into the
reinforcement learning decision process, the study
advances a more holistic and sustainability-oriented
approach to resource management, building directly
on the foundational framework introduced by
Kanikanti et al. (2025). Through extensive conceptual
analysis grounded in the literature, it has been shown
that queuing-aware learning agents can achieve
superior balance between throughput, latency, energy
efficiency, and system stability compared to traditional
heuristic or queue-agnostic learning approaches.

The findings underscore the importance of viewing
gueues not merely as operational constraints but as
dynamic and learnable components of complex
systems. In both cloud and manufacturing contexts,
this perspective enables more proactive and globally
informed scheduling decisions, contributing to greener,

American Journal of Applied Science and Technology

more resilient, and more efficient infrastructures.
While challenges remain in terms of scalability, reward
design, and real-world deployment, the queuing-aware

deep reinforcement learning paradigm offers a
powerful foundation for future research and
innovation in intelligent scheduling.
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