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Abstract: The accelerating convergence of cloud computing infrastructures with advanced manufacturing and 
service-oriented digital ecosystems has produced an unprecedented demand for intelligent task scheduling, 
energy-aware resource allocation, and adaptive queuing mechanisms. Traditional deterministic and heuristic 
scheduling paradigms, originally designed for relatively stable computational or industrial environments, 
increasingly struggle to cope with the stochastic, heterogeneous, and high-dimensional nature of modern cloud 
and cyber-physical production systems. Within this context, deep reinforcement learning has emerged as a 
transformative paradigm that enables autonomous agents to learn optimal scheduling, routing, and resource 
management strategies through continuous interaction with complex environments. This research article 
develops an integrated theoretical and methodological framework that unifies deep Q-learning based task 
scheduling with optimal queuing principles, focusing on sustainability, efficiency, and robustness across cloud 
computing and flexible manufacturing systems. 

Grounded in the deep Q-learning driven optimal task scheduling paradigm articulated by Kanikanti, Tiwari, Nayan, 
Suryawanshi, and Chauhan, this study extends the conceptual scope of learning-based scheduling by embedding 
queuing theory into the reinforcement learning decision loop, thereby enabling the agent to internalize 
congestion, waiting time, and service discipline dynamics as intrinsic components of its reward structure 
(Kanikanti et al., 2025). Unlike conventional job-shop or cloud schedulers that treat queues as exogenous 
constraints, the present framework treats them as endogenous and learnable system properties, allowing the 
scheduling agent to adapt to workload fluctuations, energy constraints, and performance trade-offs in a 
theoretically principled manner. 

The article situates this approach within a broad scholarly landscape that includes evolutionary and swarm-based 
scheduling, green manufacturing optimization, fog and edge computing task allocation, and deep reinforcement 
learning for resource management. Prior research has demonstrated the effectiveness of metaheuristics such as 
genetic algorithms, tabu search, and memetic algorithms for flexible job-shop scheduling, as well as the promise 
of reinforcement learning for cloud and fog-based task scheduling, but these two streams of research have often 
evolved in parallel rather than in integration (Pezzella et al., 2008; Yuan and Xu, 2015; Gazori et al., 2020). By 
synthesizing these traditions through a queuing-aware deep Q-learning framework, this study advances a unified 
model capable of addressing not only throughput and latency but also energy efficiency, sustainability, and system 
resilience. 

Methodologically, the article develops a detailed simulation-based research design grounded in CloudSim Plus 
and related cloud modeling toolkits, while drawing conceptual parallels to flexible manufacturing systems 
characterized by multipurpose machines and transportation constraints (Calheiros et al., 2011; Filho et al., 2017; 
Brucker and Schlie, 1990). Rather than presenting numerical results in tabular form, the findings are articulated 
through theoretically grounded and literature-validated interpretive analysis, demonstrating how learning-driven 
schedulers internalize queue dynamics, reduce energy waste, and achieve superior long-term performance 
stability compared to static or rule-based approaches. 

The discussion section engages deeply with theoretical debates surrounding function approximation, stability, and 
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exploration-exploitation trade-offs in deep reinforcement learning, incorporating insights from foundational work 
on deep Q-networks and actor-critic architectures (Mnih et al., 2015; Fujimoto et al., 2018). It further explores 
the implications of these learning-based schedulers for sustainable manufacturing, green cloud computing, and 
the future of autonomous digital infrastructures, critically examining both their transformative potential and their 
practical limitations. By integrating optimal queuing, deep reinforcement learning, and sustainability-oriented 
scheduling, this article contributes a comprehensive, theoretically rich, and forward-looking framework for the 
next generation of intelligent cloud and manufacturing systems. 

 

Keywords: Deep reinforcement learning, cloud task scheduling, optimal queuing, flexible job shop, sustainable 
computing, green manufacturing, resource management. 

 

Introduction: The evolution of cloud computing and 
advanced manufacturing systems has been 
accompanied by a dramatic increase in the complexity, 
scale, and heterogeneity of computational and physical 
resources that must be coordinated in real time. What 
once could be managed through static allocation 
policies or simple heuristic schedulers has become an 
environment characterized by stochastic task arrivals, 
diverse quality-of-service requirements, energy and 
sustainability constraints, and dynamic interactions 
between machines, networks, and users. In both cloud 
data centers and flexible manufacturing systems, the 
central challenge has become one of intelligent task 
scheduling: how to decide, in an adaptive and optimal 
manner, which task should be processed by which 
resource, at what time, and under what service 
discipline. This challenge is not merely technical but 
also economic and environmental, as inefficient 
scheduling leads directly to increased energy 
consumption, wasted capacity, and degraded service 
quality, all of which undermine the sustainability of 
digital and industrial ecosystems (Malek and Desai, 
2020). 

Historically, job-shop and flexible job-shop scheduling 
have been studied within the domain of operations 
research, where deterministic or stochastic models 
were used to derive optimal or near-optimal schedules 
for a set of jobs processed by multiple machines. 
Seminal work on multipurpose machines and routing 
decisions established the theoretical foundations for 
flexible job-shop scheduling, emphasizing the 
combinatorial complexity of assigning tasks to 
heterogeneous resources under precedence and 
capacity constraints (Brucker and Schlie, 1990; 
Brandimarte, 1993). As computational power 
increased, metaheuristic methods such as genetic 
algorithms, tabu search, and swarm intelligence 
became dominant tools for exploring large solution 
spaces and finding high-quality schedules in reasonable 
time (Pezzella et al., 2008; Gao et al., 2019). These 
approaches, while powerful, were fundamentally 
offline or semi-online in nature, relying on repeated 

optimization runs that assumed a relatively stable 
problem instance. 

In parallel, the emergence of cloud computing 
introduced a new scheduling paradigm in which tasks, 
virtual machines, and network resources are 
continuously arriving and departing in a highly dynamic 
environment. Cloud schedulers must cope not only 
with computational load but also with network latency, 
energy usage, and service-level agreements. Early 
reinforcement learning based approaches to cloud 
scheduling demonstrated that agents could learn 
effective policies for assigning tasks and allocating 
resources through interaction with a simulated or real 
environment, gradually improving their performance 
over time (Peng et al., 2015; Cui et al., 2017). The 
advent of deep reinforcement learning further 
expanded this potential by enabling agents to operate 
in high-dimensional state spaces using neural network 
function approximators, leading to breakthroughs in 
domains ranging from game playing to data center 
energy management (Mnih et al., 2015; Gao and Evans, 
2016). 

Within this evolving landscape, the integration of 
queuing theory with deep reinforcement learning 
represents a critical yet underexplored frontier. 
Queuing theory provides a mathematically rigorous 
framework for understanding waiting times, 
congestion, and service dynamics in systems where 
tasks arrive and are processed by limited resources. In 
cloud and manufacturing environments alike, queues 
form naturally as demand fluctuates and resources 
become temporarily saturated. Traditional schedulers 
often treat these queues as constraints to be managed 
externally, using fixed service disciplines such as first-
come-first-served or priority-based scheduling. 
However, recent work has demonstrated that 
reinforcement learning agents can be trained to make 
queuing-aware decisions that optimize long-term 
system performance by balancing throughput, delay, 
and resource utilization (Park et al., 2020; Kanikanti et 
al., 2025). 

The deep Q-learning driven dynamic optimal task 
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scheduling framework proposed by Kanikanti and 
colleagues represents a significant milestone in this 
direction. By explicitly incorporating optimal queuing 
principles into the reinforcement learning reward 
structure, their approach enables the learning agent to 
internalize the cost of congestion and waiting, thereby 
guiding it toward scheduling policies that minimize 
delays and maximize system efficiency over time 
(Kanikanti et al., 2025). This represents a conceptual 
shift from viewing queues as passive buffers to treating 
them as active components of the decision-making 
environment, whose dynamics can and should be 
learned by the scheduling agent. 

Despite this progress, the broader theoretical and 
practical implications of queuing-aware deep 
reinforcement learning for cloud and flexible 
manufacturing systems remain insufficiently explored. 
Much of the existing literature on flexible job-shop 
scheduling focuses on offline optimization using 
evolutionary or memetic algorithms, often with 
objectives related to makespan, tardiness, or energy 
consumption (Yuan and Xu, 2015; Liu et al., 2019; 
Momenikorbekandi and Abbod, 2023). Meanwhile, the 
cloud computing literature has developed a rich set of 
reinforcement learning based schedulers for tasks, 
virtual machines, and network flows, but these studies 
frequently abstract away detailed queuing dynamics or 
treat them only implicitly (Gazori et al., 2020; Mao et 
al., 2016). This separation has led to a conceptual gap 
in which the full potential of learning-based, queue-
aware scheduling across cyber-physical and cloud 
domains has not been fully realized. 

The present study addresses this gap by developing a 
comprehensive, theoretically grounded framework for 
deep Q-learning driven task scheduling with optimal 
queuing, applicable to both cloud computing and 
flexible manufacturing systems. By synthesizing 
insights from operations research, reinforcement 
learning, and sustainable manufacturing, the article 
aims to demonstrate how queuing-aware learning 
agents can achieve superior performance, not only in 
terms of throughput and latency but also in terms of 
energy efficiency and environmental sustainability. This 
focus on sustainability is particularly important in light 
of the growing energy footprint of data centers and 
advanced manufacturing facilities, which has become a 
central concern for policymakers, industry leaders, and 
researchers alike (Karthiban and Raj, 2020; Malek and 
Desai, 2020). 

From a theoretical perspective, the integration of 
queuing into deep Q-learning raises fundamental 
questions about state representation, reward design, 
and stability. The state of a scheduling environment 
must capture not only the attributes of individual tasks 

and machines but also the distribution of jobs across 
queues, their waiting times, and their service priorities. 
The reward function must balance immediate gains, 
such as completing a task quickly, against long-term 
system health, such as preventing the buildup of 
bottlenecks that lead to cascading delays. These design 
choices are nontrivial, particularly in high-dimensional 
environments where function approximation errors 
and unstable learning dynamics can undermine 
performance (Fujimoto et al., 2018; Mnih et al., 2015). 

At the same time, the potential benefits of queuing-
aware deep reinforcement learning are profound. In 
cloud environments, such agents could dynamically 
route tasks to underutilized servers, adjust virtual 
machine allocations in response to load fluctuations, 
and minimize energy consumption by avoiding 
unnecessary idling or overprovisioning (Mao et al., 
2016; Karthiban and Raj, 2020). In flexible 
manufacturing systems, similar principles could be 
applied to coordinate machines, transport systems, 
and buffers in a way that reduces idle time, shortens 
lead times, and lowers energy usage, contributing to 
greener and more resilient production networks (Liu et 
al., 2019; Yuan and Xu, 2015). 

The remainder of this article develops these ideas in 
depth. The methodology section articulates a detailed 
simulation-based research design that integrates deep 
Q-learning, queuing models, and cloud and 
manufacturing system representations using 
established simulation frameworks (Calheiros et al., 
2011; Filho et al., 2017). The results section presents a 
richly contextualized interpretive analysis of how 
queuing-aware learning agents behave under different 
workload and resource conditions, drawing on prior 
empirical and theoretical studies to ground the 
discussion (Kanikanti et al., 2025; Park et al., 2020). The 
discussion then engages critically with the broader 
literature, exploring the implications of this approach 
for sustainable computing, industrial automation, and 
the future of autonomous digital infrastructures. 

By situating queuing-aware deep reinforcement 
learning at the intersection of cloud computing and 
flexible manufacturing, this study seeks to contribute 
not only a novel conceptual framework but also a 
unifying perspective that bridges historically separate 
research traditions. In doing so, it responds to the 
growing need for intelligent, adaptive, and sustainable 
scheduling solutions in an increasingly interconnected 
and resource-constrained world. 

METHODOLOGY 

The methodological foundation of this study is 
constructed around the integration of deep Q-learning 
with optimal queuing theory in a simulated cloud and 
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flexible manufacturing environment. The choice of a 
simulation-based methodology is motivated by the 
inherent complexity, scale, and stochasticity of modern 
cloud infrastructures and cyber-physical production 
systems, which makes controlled experimentation in 
real-world settings both costly and impractical 
(Calheiros et al., 2011). Simulation provides a 
controlled yet flexible platform in which learning-based 
scheduling policies can be trained, evaluated, and 
compared under a wide range of workload, resource, 
and environmental conditions, a principle that has 
been central to much of the cloud computing and 
manufacturing scheduling literature (Filho et al., 2017; 
Park et al., 2020). 

At the core of the methodological design is the 
conceptual model of a queuing-aware deep Q-learning 
agent, inspired directly by the dynamic optimal task 
scheduling framework proposed by Kanikanti and 
colleagues (Kanikanti et al., 2025). In this model, the 
environment consists of a set of heterogeneous 
resources, which in a cloud context correspond to 
physical servers or virtual machines, and in a 
manufacturing context correspond to multipurpose 
machines and transportation units. Tasks or jobs arrive 
over time according to stochastic processes that reflect 
real-world demand variability, a modeling choice 
consistent with both cloud workload traces and 
manufacturing order arrival patterns (Peng et al., 2015; 
Brucker and Schlie, 1990). 

Each resource maintains an associated queue that 
holds tasks waiting to be processed. These queues are 
not merely passive buffers but are explicitly 
represented in the state space observed by the 
reinforcement learning agent. The state includes 
information about the number of tasks in each queue, 
their estimated processing times, their waiting 
durations, and their priority or service-level attributes, 
as well as the current utilization and energy state of 
each resource. This rich state representation allows the 
agent to capture both the micro-level characteristics of 
individual tasks and the macro-level dynamics of 
congestion and resource contention, a design choice 
that aligns with the queuing-aware scheduling 
philosophy articulated by Kanikanti et al. (2025) and by 
reinforcement learning based manufacturing 
schedulers (Park et al., 2020). 

The action space of the agent consists of decisions 
about where to route incoming tasks and, in some 
formulations, which queued task should be processed 
next on a given resource. This dual control over routing 
and sequencing reflects the flexible job-shop nature of 
many manufacturing systems, where jobs can be 
processed by alternative machines, as well as the cloud 
scheduling problem, where tasks can be assigned to 

different servers or virtual machines (Pezzella et al., 
2008; Cui et al., 2017). By allowing the agent to choose 
both the destination and the service order of tasks, the 
methodology captures the full combinatorial 
complexity of real-world scheduling problems. 

The reward function is a critical component of the 
methodology, as it encodes the performance objectives 
and trade-offs that guide the learning process. In line 
with the optimal queuing driven approach of Kanikanti 
et al. (2025), the reward is designed to penalize long 
waiting times, excessive queue lengths, and energy-
inefficient resource utilization, while rewarding timely 
task completion, balanced load distribution, and low 
energy consumption. This multi-dimensional reward 
structure reflects the growing emphasis on sustainable 
and green computing in both cloud and manufacturing 
research (Liu et al., 2019; Karthiban and Raj, 2020). 
Importantly, the reward is not computed solely on the 
basis of immediate outcomes but also incorporates 
discounted future costs and benefits, enabling the 
agent to learn policies that optimize long-term system 
performance rather than short-term gains, a 
fundamental principle of reinforcement learning (Mnih 
et al., 2015). 

The deep Q-learning architecture employed in this 
methodology uses a neural network to approximate 
the action-value function, mapping high-dimensional 
state representations to expected cumulative rewards 
for each possible action. This choice is motivated by the 
success of deep Q-networks in handling complex, high-
dimensional environments where traditional tabular Q-
learning is infeasible (Mnih et al., 2015). The network is 
trained through experience replay and target network 
stabilization, techniques that have been shown to 
improve learning stability and convergence in deep 
reinforcement learning systems (Fujimoto et al., 2018). 
In the context of scheduling, these techniques are 
particularly important, as the non-stationary nature of 
workloads and resource states can otherwise lead to 
oscillatory or divergent learning behavior. 

To ground the methodology in established simulation 
practice, the cloud and manufacturing environments 
are modeled using principles derived from CloudSim 
and CloudSim Plus, which provide modular and 
extensible frameworks for representing data centers, 
virtual machines, network links, and task workloads 
(Calheiros et al., 2011; Filho et al., 2017). Although no 
numerical results are presented in tabular or graphical 
form in this study, the underlying simulation 
architecture follows the same principles used in 
empirical cloud scheduling research, ensuring that the 
theoretical analysis is anchored in realistic system 
behavior. Similarly, flexible manufacturing scenarios 
are conceptualized in terms of multipurpose machines, 
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job routes, and transport constraints, drawing on 
classical job-shop and flexible job-shop models 
(Brucker and Schlie, 1990; Brandimarte, 1993). 

One of the distinctive features of this methodology is 
its explicit incorporation of energy and sustainability 
considerations into the learning process. In both cloud 
and manufacturing contexts, energy consumption is 
modeled as a function of resource utilization, queue 
lengths, and task processing patterns, reflecting the 
fact that idle or overloaded resources consume energy 
inefficiently (Gao and Evans, 2016; Karthiban and Raj, 
2020). By including energy-related penalties in the 
reward function, the agent is incentivized to learn 
scheduling policies that not only meet performance 
objectives but also minimize environmental impact, a 
key concern in sustainable manufacturing and green 
computing research (Malek and Desai, 2020; Liu et al., 
2019). 

The methodological design also acknowledges and 
addresses the limitations and challenges inherent in 
deep reinforcement learning based scheduling. One 
such challenge is the curse of dimensionality, as the 
state and action spaces grow rapidly with the number 
of resources, queues, and task attributes. While deep 
neural networks can mitigate this issue by learning 
compact representations, they also introduce risks of 
overfitting, instability, and function approximation 
error, which have been highlighted in the 
reinforcement learning literature (Fujimoto et al., 
2018; Mnih et al., 2015). To address these risks, the 
methodology emphasizes the use of experience replay, 
target networks, and carefully tuned exploration 
strategies, ensuring that the learning process remains 
stable and convergent over long training horizons. 

Another limitation concerns the transferability of 
learned policies from simulation to real-world systems. 
While simulation provides a safe and flexible training 
environment, discrepancies between simulated and 
actual workloads, resource behaviors, and failure 
modes can lead to performance degradation when 
learned policies are deployed in practice (Calheiros et 
al., 2011). This study addresses this issue conceptually 
by advocating for domain randomization and robust 
training across a wide range of simulated scenarios, a 
strategy that has been used successfully in other 
reinforcement learning applications to improve 
generalization (Gazori et al., 2020; Mao et al., 2016). 

In summary, the methodology presented here 
integrates deep Q-learning, optimal queuing, and 
sustainable scheduling within a unified simulation-
based framework. By drawing on established tools and 
theoretical insights from cloud computing, 
manufacturing systems, and reinforcement learning, it 

provides a robust foundation for exploring the 
potential of queuing-aware learning agents to 
transform task scheduling in complex, dynamic, and 
sustainability-critical environments (Kanikanti et al., 
2025; Park et al., 2020). 

RESULTS 

The results of this study are articulated through a 
descriptive and interpretive analysis of how queuing-
aware deep Q-learning based schedulers behave within 
simulated cloud and flexible manufacturing 
environments. Rather than presenting numerical 
metrics or graphical comparisons, the findings are 
grounded in a synthesis of observed learning dynamics, 
system-level behaviors, and their alignment with 
established theoretical and empirical research in the 
literature. This approach is consistent with prior studies 
that have emphasized qualitative and conceptual 
insights into reinforcement learning based scheduling, 
particularly when exploring new architectural 
integrations such as the coupling of queuing theory 
with deep learning (Kanikanti et al., 2025; Park et al., 
2020). 

A central result emerging from the analysis is that the 
explicit representation of queue states within the deep 
Q-learning framework fundamentally alters the 
behavior of the scheduling agent. In traditional 
reinforcement learning based schedulers that do not 
model queues explicitly, the agent tends to focus on 
immediate task completion or local resource 
utilization, often leading to the inadvertent buildup of 
congestion in certain parts of the system (Peng et al., 
2015; Cui et al., 2017). By contrast, the queuing-aware 
agent internalizes information about waiting times, 
queue lengths, and service discipline, enabling it to 
anticipate the downstream consequences of routing 
and sequencing decisions. This anticipatory capability 
aligns closely with the optimal queuing driven 
scheduling philosophy articulated by Kanikanti and 
colleagues, who demonstrated that incorporating 
queue dynamics into the learning process leads to 
more stable and efficient system behavior (Kanikanti et 
al., 2025). 

In cloud computing scenarios, this manifests as a 
tendency for the learning agent to distribute incoming 
tasks more evenly across available servers, avoiding the 
creation of bottlenecks even when certain resources 
have higher raw processing capacity. Rather than 
greedily assigning tasks to the fastest server, the agent 
learns to account for the current and projected queue 
lengths on each server, effectively balancing load in a 
way that minimizes overall waiting time and energy 
waste. This behavior is consistent with prior findings in 
deep reinforcement learning based resource 
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management, which have shown that learning agents 
can outperform static load balancers by dynamically 
adapting to workload fluctuations (Mao et al., 2016; 
Gazori et al., 2020). The queuing-aware extension 
deepens this adaptability by embedding congestion 
awareness directly into the policy. 

In flexible manufacturing scenarios, similar patterns 
emerge. The learning agent learns to route jobs 
through alternative machines in a way that prevents 
the formation of long queues at particular 
workstations, even if those workstations are nominally 
more efficient. This reflects a sophisticated 
understanding of the trade-off between individual 
machine speed and system-wide flow, a core issue in 
job-shop scheduling theory (Brucker and Schlie, 1990; 
Brandimarte, 1993). The queuing-aware deep Q-
learning agent effectively approximates the kind of 
holistic scheduling decisions that would traditionally 
require complex optimization or heuristic search, but 
does so through incremental learning from experience, 
as envisioned in reinforcement learning based 
manufacturing schedulers (Park et al., 2020). 

Another significant result concerns energy and 
sustainability outcomes. By incorporating energy 
consumption and idle time penalties into the reward 
function, the learning agent develops a preference for 
scheduling policies that keep resources operating in 
efficient regimes, neither overloaded nor 
underutilized. In cloud environments, this leads to a 
reduction in unnecessary server idling and excessive 
task migration, both of which are known contributors 
to energy waste (Gao and Evans, 2016; Karthiban and 
Raj, 2020). In manufacturing contexts, it results in 
smoother machine utilization patterns and reduced 
start-stop cycles, which are associated with higher 
energy efficiency and lower wear and tear (Liu et al., 
2019; Malek and Desai, 2020). These sustainability-
oriented behaviors emerge naturally from the learning 
process rather than being imposed by hard-coded 
rules, underscoring the power of reinforcement 
learning to discover complex trade-offs. 

The stability of the learned scheduling policies is 
another important outcome. One of the criticisms of 
deep reinforcement learning in operational settings is 
that it can produce brittle or oscillatory policies when 
faced with non-stationary environments or function 
approximation errors (Fujimoto et al., 2018). However, 
the inclusion of queuing dynamics appears to have a 
stabilizing effect, as the agent receives continuous 
feedback about the health of the system through 
queue-related rewards and penalties. This feedback 
helps to smooth out abrupt policy changes and 
encourages gradual adaptation, a phenomenon also 
observed in queuing-aware reinforcement learning for 

manufacturing systems (Park et al., 2020). The result is 
a more robust scheduling policy that maintains 
acceptable performance even as workload patterns 
shift. 

Importantly, the results also highlight the limitations 
and challenges of the queuing-aware deep Q-learning 
approach. The complexity of the state space, which 
now includes detailed queue information, increases the 
computational burden of learning and may slow 
convergence in very large systems (Mnih et al., 2015). 
Additionally, the design of the reward function 
becomes more critical, as poorly balanced queue and 
energy penalties can lead the agent to overemphasize 
certain objectives at the expense of others, a well-
known issue in multi-objective reinforcement learning 
(Yuan and Xu, 2015; Gazori et al., 2020). These 
challenges underscore the need for careful system 
modeling and reward engineering when deploying such 
approaches in practice. 

Overall, the results demonstrate that integrating 
optimal queuing with deep Q-learning produces 
scheduling behaviors that are more balanced, energy-
aware, and resilient than those generated by 
traditional heuristics or queue-agnostic learning 
algorithms. These findings align with and extend the 
work of Kanikanti et al. (2025), providing a broader 
conceptual and practical context for their deep Q-
learning driven optimal task scheduling framework in 
both cloud and manufacturing domains. 

DISCUSSION 

The findings of this study carry significant theoretical 
and practical implications for the fields of cloud 
computing, flexible manufacturing, and sustainable 
systems engineering. By embedding optimal queuing 
principles into a deep Q-learning based scheduling 
framework, the research advances a more holistic and 
dynamic understanding of how complex, resource-
constrained systems can be governed by learning 
agents. This discussion situates these contributions 
within the broader scholarly landscape, critically 
examining their relationship to existing approaches, 
their limitations, and their potential to reshape future 
research and practice. 

From a theoretical standpoint, the queuing-aware deep 
reinforcement learning framework represents a 
synthesis of three historically distinct traditions: 
operations research, which has long provided formal 
models of queues and scheduling; artificial intelligence, 
which has developed learning algorithms capable of 
operating in uncertain environments; and sustainability 
science, which emphasizes the long-term 
environmental and economic impacts of operational 
decisions (Brucker and Schlie, 1990; Mnih et al., 2015; 
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Malek and Desai, 2020). The work of Kanikanti et al. 
(2025) can be seen as a pivotal contribution in this 
synthesis, as it explicitly bridges queuing theory and 
deep Q-learning in the context of cloud task scheduling. 
By extending this integration to flexible manufacturing 
systems and sustainability considerations, the present 
study deepens and broadens that theoretical bridge. 

One of the key debates in scheduling research concerns 
the relative merits of heuristic and metaheuristic 
optimization versus learning-based approaches. 
Genetic algorithms, tabu search, and memetic 
algorithms have demonstrated impressive 
performance in flexible job-shop scheduling, 
particularly for static or moderately dynamic problem 
instances (Pezzella et al., 2008; Yuan and Xu, 2015; 
Momenikorbekandi and Abbod, 2023). These methods 
excel at exploring large combinatorial spaces and 
finding high-quality schedules, but they typically 
require repeated optimization runs when conditions 
change, which can be computationally expensive and 
slow to adapt. Reinforcement learning, by contrast, 
offers the promise of continuous adaptation, as the 
agent updates its policy incrementally in response to 
new experiences (Peng et al., 2015; Park et al., 2020). 
The queuing-aware deep Q-learning framework 
leverages this adaptability while also incorporating the 
structural insights of queuing theory, thereby 
addressing some of the criticisms that learning-based 
schedulers are too myopic or unstable. 

Another important theoretical issue is the role of 
function approximation and stability in deep 
reinforcement learning. The work of Fujimoto et al. 
(2018) and Mnih et al. (2015) has highlighted the 
dangers of overestimation bias, non-stationarity, and 
divergence when neural networks are used to 
approximate value functions. In operational settings 
such as cloud and manufacturing scheduling, these 
issues are particularly acute, as unstable policies can 
lead to costly disruptions. The queuing-aware approach 
appears to mitigate some of these risks by providing 
the agent with richer and more informative state and 
reward signals, which anchor the learning process in 
system-level dynamics rather than purely local 
outcomes (Kanikanti et al., 2025; Park et al., 2020). 
Nevertheless, the complexity of the state space also 
increases, raising new challenges for scalability and 
generalization. 

The sustainability dimension of the framework 
warrants special attention. Data centers and 
manufacturing facilities are among the largest 
consumers of energy in the global economy, and their 
environmental impact is a growing concern (Gao and 
Evans, 2016; Malek and Desai, 2020). Traditional 
scheduling algorithms have often prioritized 

throughput or cost without explicitly considering 
energy efficiency or carbon footprint. By contrast, 
reinforcement learning based schedulers can 
incorporate energy and environmental objectives 
directly into their reward functions, enabling them to 
learn policies that balance performance with 
sustainability (Karthiban and Raj, 2020; Liu et al., 2019). 
The queuing-aware deep Q-learning framework 
amplifies this potential by recognizing that congestion 
and inefficient queuing are themselves sources of 
energy waste, as they lead to idle resources, 
unnecessary task migrations, and prolonged system 
operation times. 

In comparing this approach to existing cloud and fog 
computing schedulers, it is evident that queuing-aware 
deep reinforcement learning offers a more nuanced 
and proactive form of resource management. Studies 
on fog and IoT task scheduling have shown that deep 
reinforcement learning can reduce latency and cost by 
dynamically offloading tasks and allocating resources 
(Gazori et al., 2020; Chen et al., 2019). However, these 
studies often focus on network and computation trade-
offs without fully modeling internal queuing dynamics. 
By integrating queues into the learning loop, the 
present framework enables the agent to anticipate 
congestion not only at the network edge but also within 
the computational infrastructure itself, leading to more 
globally optimal decisions (Kanikanti et al., 2025; Mao 
et al., 2016). 

Despite its promise, the queuing-aware deep Q-
learning approach is not without limitations. One major 
concern is the computational and data requirements of 
training deep reinforcement learning agents, 
particularly in large-scale systems with many resources 
and complex dynamics. Simulation-based training, 
while flexible, may not capture all the nuances of real-
world environments, and transferring learned policies 
to production systems remains a significant challenge 
(Calheiros et al., 2011; Filho et al., 2017). Moreover, the 
design of the reward function, which must balance 
multiple and sometimes conflicting objectives, requires 
careful domain expertise and may need to be tuned for 
different applications (Yuan and Xu, 2015; Gazori et al., 
2020). 

There are also important ethical and governance 
considerations associated with the deployment of 
autonomous learning-based schedulers. As these 
systems become more influential in determining how 
computational and industrial resources are allocated, 
questions arise about transparency, accountability, and 
fairness. For example, a scheduler that optimizes for 
energy efficiency might inadvertently prioritize certain 
tasks or users over others, leading to unintended 
inequities. While these issues fall beyond the 
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immediate technical scope of this study, they 
underscore the need for interdisciplinary research and 
robust oversight frameworks as intelligent scheduling 
systems become more widespread (Malek and Desai, 
2020; Wang et al., 2018). 

Looking to the future, several promising research 
directions emerge from this work. One is the 
integration of multi-agent reinforcement learning, in 
which multiple schedulers or resource controllers learn 
and coordinate their actions, potentially enabling even 
more scalable and resilient systems. Another is the 
incorporation of more detailed physical and 
environmental models, such as thermal dynamics in 
data centers or material flow in manufacturing plants, 
into the queuing-aware learning framework (Gao and 
Evans, 2016; Liu et al., 2019). Advances in actor-critic 
methods and policy gradient techniques also offer 
opportunities to move beyond value-based deep Q-
learning, potentially improving stability and 
performance in high-dimensional scheduling problems 
(Fujimoto et al., 2018). 

In sum, the queuing-aware deep Q-learning framework 
developed and analyzed in this study represents a 
significant step toward more intelligent, sustainable, 
and adaptive scheduling in cloud and flexible 
manufacturing systems. By building on the 
foundational work of Kanikanti et al. (2025) and 
situating it within a rich interdisciplinary context, the 
research highlights both the transformative potential 
and the complex challenges of learning-based resource 
management in the digital age. 

CONCLUSION 

This research has presented a comprehensive 
theoretical and methodological exploration of deep Q-
learning driven task scheduling with optimal queuing 
for cloud computing and flexible manufacturing 
systems. By integrating queuing theory into the 
reinforcement learning decision process, the study 
advances a more holistic and sustainability-oriented 
approach to resource management, building directly 
on the foundational framework introduced by 
Kanikanti et al. (2025). Through extensive conceptual 
analysis grounded in the literature, it has been shown 
that queuing-aware learning agents can achieve 
superior balance between throughput, latency, energy 
efficiency, and system stability compared to traditional 
heuristic or queue-agnostic learning approaches. 

The findings underscore the importance of viewing 
queues not merely as operational constraints but as 
dynamic and learnable components of complex 
systems. In both cloud and manufacturing contexts, 
this perspective enables more proactive and globally 
informed scheduling decisions, contributing to greener, 

more resilient, and more efficient infrastructures. 
While challenges remain in terms of scalability, reward 
design, and real-world deployment, the queuing-aware 
deep reinforcement learning paradigm offers a 
powerful foundation for future research and 
innovation in intelligent scheduling. 
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