ol &S

%// ;7&\.;# g Vol.05 Issue 11 2025
= o 312-319
0SCAR PUBLISHING

ervices

American Journal of Applied Science
and Technology

Backend Framework Evolution in the Era of Distributed,

Event-Driven, and Cross-Platform Software Systems

Henry T. Langford
Department of Computer and Systems Sciences, Stockholm University, Sweden

Received: 01 November 2025; Accepted: 17 November 2025; Published: 30 November 2025

Abstract: The contemporary software engineering landscape is characterized by a profound convergence of
backend framework evolution, architectural paradigms, and cross-platform development methodologies. This
article presents an extensive and theoretically grounded investigation into the evolution of Microsoft’'s ASP.NET
ecosystem toward ASP.NET Core, situating this transformation within broader shifts toward modularity, platform
neutrality, event-driven architectures, and scalable cloud-native systems. Drawing strictly and exclusively on the
provided body of scholarly and industry literature, the study examines how backend frameworks have responded
to escalating demands for performance efficiency, interoperability, real-time responsiveness, and long-term
maintainability. Particular emphasis is placed on the evolutionary trajectory articulated in recent analyses of
ASP.NET Core tooling, strategies, and implementation approaches, which underscore a decisive movement away
from monolithic, platform-bound architectures toward lightweight, open, and extensible runtime environments
(Valiveti, 2025).

Through an expansive discussion of scholarly debates, counter-arguments, and historical context, the article argues
that the evolution of ASP.NET Core cannot be understood in isolation. Instead, it represents a systemic response to
the maturation of cloud computing, the proliferation of mobile and cross-platform applications, and the increasing
centrality of integration and interoperability in enterprise systems. The findings contribute to theoretical
understanding by articulating a unifying perspective that links backend framework evolution with architectural and
methodological transformations across the software stack. The article concludes by identifying enduring challenges,
including complexity management, skills transition, and architectural governance, while outlining future research
directions that emerge from the ongoing convergence of backend, frontend, and integration technologies.

Keywords: ASP.NET Core, backend framework evolution, event-driven architecture, distributed systems, cross-
platform development, cloud-native software

INTRODUCTION

Catabolism The evolution of software frameworks is
inseparable from the broader historical trajectory of
computing paradigms, organizational demands, and
technological affordances. From early client—server
architectures to contemporary cloud-native
ecosystems, backend frameworks have continually
adapted to shifting requirements for scalability,
performance, and interoperability. Within this context, . i) :
the transition from traditional ASP.NET to ASP.NET 2ssumptions reflected an era in which enterprise
Core represents not merely a technological upgrade applications were predominantly hosted on on-

but a paradigmatic reorientation toward modularity, premises infrastructure, characterized by relatively
openness, and platform independence, reflecting stable workloads and homogeneous technology stacks.

deeper structural changes in software engineering As cloud computmg ga‘lned prommence, however,
practice (Valiveti, 2025). The significance of this these assumptions were increasingly challenged by the
evolution becomes particularly evident when need for elastic scalability, heterogeneous deployment

examined alongside parallel developments in environments, and rapid release cycles (Kommera,
2013). Scholarly analyses of distributed systems

distributed systems, event-driven architectures, and
cross-platform application frameworks, = which
collectively redefine the expectations placed upon
backend services (Kommera, 2013; Kommera, 2020).

Historically, ASP.NET emerged as a tightly integrated

web application framework optimized for deployment
within the Microsoft Windows ecosystem. Its design

American Journal of Applied Science and Technology 312 https://theusajournals.com/index.php/ajast

American Journal of Applied Science and Technology (ISSN: 2771-2745)

emphasized that scalability and resilience could no
longer be treated as peripheral concerns but had to be
embedded directly into architectural design
(Kommera, 2013). This shift created mounting
pressure for backend frameworks to decouple from
operating system dependencies and to support
lightweight, service-oriented deployment models.

The introduction of ASP.NET Core can thus be
interpreted as a strategic response to these pressures.
Rather than extending the legacy framework
incrementally, Microsoft undertook a comprehensive
redesign that embraced open-source development,
cross-platform runtime support, and a modular
middleware pipeline (Valiveti, 2025). This redesign
aligns closely with theoretical principles articulated in
the literature on event-driven architecture, which
advocates loose coupling, asynchronous
communication, and reactive responsiveness as
foundational qualities of modern systems (Kommera,
2020). By enabling developers to compose applications
from discrete middleware components, ASP.NET Core
facilitates architectural patterns that resonate with
event-driven and microservices-based approaches,
thereby bridging framework design with contemporary
architectural theory (Valiveti, 2025).

At the same time, the evolution of backend
frameworks cannot be fully understood without
considering the transformation of frontend and client-
side technologies. The proliferation of mobile devices
and the growing dominance of cross-platform
development frameworks have reshaped the
interaction patterns between clients and servers.
Studies of mobile application markets highlight
explosive growth in application volume and diversity,
driven by widespread smartphone penetration and
evolving user expectations for real-time
responsiveness and seamless cross-device experiences
(Zein et al., 2023). In response, frontend frameworks

such as Angular have undergone their own
architectural transformations, emphasizing
modularity, reactive programming, and efficient

rendering pipelines (Kodali, 2019; Kodali, 2022). These
frontend evolutions impose new constraints on
backend services, which must efficiently support high-
frequency interactions, state synchronization, and
scalable data exchange.

The literature on integration platforms as a service
further underscores the growing importance of
interoperability in complex enterprise environments.
As organizations increasingly rely on heterogeneous
systems and third-party services, backend frameworks
are expected to function as integration hubs capable of

American Journal of Applied Science and Technology

orchestrating data flows across diverse platforms
(Kommera, 2015). ASP.NET Core’s emphasis on
standardized protocols, dependency injection, and
extensibility can be interpreted as an architectural
response to these integration demands, enabling
developers to construct services that participate
seamlessly in distributed integration ecosystems
(Valiveti, 2025). This perspective situates framework
evolution within a broader narrative of enterprise
digital transformation, in which backend technologies
serve as critical enablers of organizational agility and
innovation (Kommera, 2015).

Despite the substantial body of literature addressing
individual aspects of these transformations, a notable
gap persists in integrative analyses that connect
backend framework evolution with architectural
paradigms and cross-platform development trends.
Existing studies often focus narrowly on performance
benchmarks, tooling features, or isolated architectural
patterns, without fully articulating the systemic
interdependencies that shape modern software
ecosystems (Shah et al., 2019). This fragmentation
limits theoretical understanding and hinders the
development of coherent design principles that span
the entire software stack. Addressing this gap requires
a holistic analytical approach that synthesizes insights
from backend framework research, distributed
systems theory, event-driven architecture, and cross-
platform development methodologies.

The present article seeks to address this need by
offering a comprehensive, theory-driven analysis of
the evolution of ASP.NET Core within the broader
context of modern software engineering paradigms.
Building on recent scholarly contributions that
document the tools, strategies, and implementation
approaches associated with ASP.NET Core (Valiveti,
2025), the study integrates these insights with
foundational and contemporary literature on
distributed systems, event-driven architecture, and
cross-platform development. By doing so, it aims to
elucidate how backend framework evolution both
reflects and shapes the architectural and
methodological choices of modern software
development.

In pursuing this objective, the article adopts a
qualitative research design grounded in systematic
literature synthesis and interpretive analysis. This
approach is particularly well suited to examining
complex technological phenomena that unfold over
extended periods and across multiple domains, as it
allows for the integration of diverse perspectives and
the exploration of theoretical tensions and

313 https://theusajournals.com/index.php/ajast

American Journal of Applied Science and Technology (ISSN: 2771-2745)

complementarities (Zein et al., 2023). The resulting

analysis is intended not only to document
technological change but also to contribute to
theoretical discourse by articulating a unifying

conceptual framework that links backend evolution
with broader architectural trends.

The remainder of the article is structured to
progressively develop this analysis. Following this
introduction, the methodology section details the
interpretive and analytical procedures employed in
synthesizing the literature. The results section presents
a descriptive and interpretive account of key themes
emerging from the analysis, grounded firmly in existing
scholarly work. The discussion section offers an
extensive theoretical interpretation of these findings,
engaging with competing viewpoints, limitations, and
future research directions. The article concludes by
summarizing the central arguments and reflecting on
the implications of backend framework evolution for
the future of software engineering practice.

METHODOLOGY

The methodological foundation of this research is
qgualitative, interpretive, and literature-centric,
reflecting the theoretical and analytical nature of the
inquiry into backend framework evolution and
architectural convergence. Rather than generating
new empirical data, the study systematically analyzes
and synthesizes existing scholarly and industry-
oriented literature to construct a comprehensive and
theoretically grounded understanding of the evolution
of ASP.NET Core and its relationship to broader
software engineering paradigms (Valiveti, 2025). This
methodological choice is consistent with established
practices in software engineering research, where
interpretive literature studies are frequently employed
to examine conceptual developments, architectural
trends, and methodological shifts that cannot be
adequately captured through isolated empirical
measurements (Zein et al., 2023).

The primary corpus of literature was defined strictly by
the references provided as input, ensuring
methodological transparency and reproducibility.
These sources encompass peer-reviewed journal
articles, conference proceedings, and authoritative
industry reports addressing backend frameworks,
distributed systems, event-driven architecture,
integration platforms, and cross-platform
development methodologies. By constraining the
analysis to this corpus, the study avoids the
introduction of external biases while enabling a
focused and in-depth examination of the theoretical

American Journal of Applied Science and Technology

landscape articulated within these works (Kommera,
2013; Kodali, 2019).

The analytical process proceeded in several iterative
stages. First, each source was subjected to close
reading to identify its core theoretical contributions,
assumptions, and claims regarding software
architecture, framework design, or development
methodology. Particular attention was paid to works
addressing the evolution of ASP.NET Core, as these
provided a focal point for integrating insights from
other domains (Valiveti, 2025). During this stage,
recurring themes such as modularity, scalability,
interoperability, and platform independence were
identified as cross-cutting concepts that link disparate
strands of the literature (Kommera, 2020).

Second, the identified themes were subjected to
comparative analysis to examine points of
convergence and divergence across the literature. For
example, discussions of event-driven architecture
were compared with analyses of distributed systems to
elucidate shared assumptions about scalability and
resilience (Kommera, 2013; Kommera, 2020). Similarly,
studies of frontend and cross-platform frameworks
were examined in relation to backend framework
evolution to explore how client-side demands
influence server-side design choices (Kodali, 2022;
Shah et al., 2019). This comparative approach enabled
the construction of an integrative analytical narrative
that situates ASP.NET Core within a broader ecosystem
of architectural and methodological transformations.

Third, the analysis incorporated a critical interpretive
dimension, engaging with counter-arguments and
limitations identified within the literature. For
instance, while many sources emphasize the benefits
of modular and event-driven architectures, others
highlight the complexity and governance challenges
associated with such approaches (Latif et al., 2016). By
explicitly addressing these tensions, the study avoids a
purely celebratory account of technological evolution
and instead presents a balanced and nuanced
interpretation grounded in scholarly debate (Zou and
Darus, 2024).

Throughout the methodological process, particular
care was taken to ensure that interpretive claims
remained firmly grounded in the cited literature. Each
major analytical step and thematic inference was
explicitly linked to one or more sources, thereby
maintaining scholarly rigor and traceability (Valiveti,
2025). This practice is especially important in
qualitative synthesis, where the risk of
overgeneralization or interpretive drift can undermine

314 https://theusajournals.com/index.php/ajast

American Journal of Applied Science and Technology (ISSN: 2771-2745)

analytical validity if not carefully managed (Zein et al.,
2023).

The methodology also acknowledges inherent
limitations. Because the study relies exclusively on
existing literature, its findings are constrained by the
scope, perspectives, and methodological choices of the
original authors. In addition, the rapidly evolving
nature of software engineering technologies means
that some insights may be temporally situated,
reflecting the state of practice and discourse at the
time of publication (Kommera, 2021). Nevertheless, by
focusing on foundational architectural principles and
long-term evolutionary trends, the study aims to
produce insights that retain relevance beyond specific
technological iterations.

In summary, the methodology combines systematic
literature selection, thematic coding, comparative
analysis, and critical interpretation to construct a
comprehensive account of backend framework
evolution. This approach is well aligned with the
study’s objective of elucidating the theoretical and
architectural significance of ASP.NET Core within the
broader context of modern software engineering
paradigms (Valiveti, 2025).

RESULTS

The results of this qualitative and interpretive analysis
are presented as a set of thematically organized
findings that emerge from the systematic synthesis of
the referenced literature. These findings do not
represent empirical measurements in the statistical
sense but rather articulate interpretive outcomes
grounded in recurring arguments, conceptual
alignments, and documented observations across
studies of backend frameworks, distributed systems,
event-driven architectures, and cross-platform
development. Each subsection elaborates a major
result derived from the literature, with explicit
attention to how the evolution of ASP.NET Core
reflects and reinforces broader software engineering
transformations (Valiveti, 2025).

One central result concerns the reconceptualization of
backend frameworks as platform-agnostic
infrastructural layers rather than tightly bound
application servers. The literature consistently
indicates that traditional backend frameworks,
including early iterations of ASP.NET, were designed
under assumptions of homogeneity, stable
deployment environments, and vertical scaling
strategies (Kommera, 2013). In contrast, ASP.NET Core
embodies a decisive shift toward platform neutrality,

American Journal of Applied Science and Technology

enabling deployment across diverse operating systems
and cloud environments (Valiveti, 2025). This shift is
not merely technical but conceptual, redefining the
backend as an adaptable runtime that must coexist
with containerization, orchestration platforms, and
heterogeneous infrastructure ecosystems. The result
of this evolution is a framework that aligns more
closely with the theoretical principles of distributed
systems, particularly those emphasizing loose coupling
and horizontal scalability (Kommera, 2013).

A second significant result relates to the convergence
between backend framework design and event-driven
architectural principles. Multiple sources emphasize
that modern software systems increasingly rely on
asynchronous communication and reactive
responsiveness to handle high volumes of concurrent
interactions and real-time data flows (Kommera,
2020). The architectural redesign of ASP.NET Core,
with its middleware pipeline and emphasis on non-
blocking 1/0, can be interpreted as a practical
instantiation of these principles within a mainstream
backend framework (Valiveti, 2025). This convergence
suggests that event-driven architecture is no longer
confined to specialized messaging systems or niche
platforms but has become a foundational influence
shaping general-purpose web frameworks.

A third result emerges from the literature on
enterprise integration and integration platforms as a
service. Studies on iPaaS adoption highlight the
growing need for backend systems to function as
integration nodes that orchestrate interactions among
internal services, external APIs, and cloud-based
platforms (Kommera, 2015). ASP.NET Core’s modular
dependency injection model and standardized
configuration mechanisms support this role by
enabling developers to compose services that
integrate seamlessly with external systems (Valiveti,
2025). The result is a backend framework that is not
only application-centric but also integration-centric,
reflecting the increasing complexity and
interdependence of enterprise software ecosystems.

The analysis also reveals a strong relationship between
backend framework evolution and the maturation of
frontend and cross-platform development
frameworks. Research on Angular's Ivy renderer,
reactive state management, and standalone
components demonstrates a parallel shift toward
modularity, efficiency, and developer ergonomics on
the client side (Kodali, 2019; Kodali, 2021; Kodali,
2022). These frontend developments generate new
patterns of client—server interaction, characterized by
frequent state updates, real-time communication, and

315 https://theusajournals.com/index.php/ajast

American Journal of Applied Science and Technology (ISSN: 2771-2745)

API-driven architectures. The result, as reflected in the
literature, is that backend frameworks like ASP.NET
Core must be optimized not only for serving static
requests but also for supporting dynamic, high-
frequency interactions across multiple platforms (Shah
et al., 2019). This mutual influence underscores the
systemic nature of software evolution, where changes
in one layer of the stack propagate across others.

Another notable result concerns the relationship
between backend frameworks and cross-platform
mobile development. Surveys and comparative
analyses of cross-platform frameworks indicate a
sustained growth in approaches that prioritize code
reuse, rapid development, and consistent behavior
across devices (Latif et al., 2016; Stanojevic et al.,
2022). These approaches depend heavily on robust
backend services capable of abstracting platform-
specific differences and providing unified data access.
The literature suggests that ASP.NET Core’s emphasis
on RESTful services, extensibility, and performance
efficiency positions it as a suitable backend companion
to cross-platform mobile frameworks (Zou and Darus,
2024). Theresultis a reinforcing cycle in which backend
and cross-platform frontend technologies co-evolve to
support increasingly complex application ecosystems.

Finally, the results highlight persistent challenges and
tensions associated with these evolutionary trends.
While modular and event-driven architectures offer
scalability and flexibility, they also introduce
complexity in terms of system comprehension,
debugging, and governance (Charkaoui et al., 2014).
Several sources caution that the benefits of modern
frameworks may be undermined if organizations lack
the architectural discipline and tooling necessary to
manage distributed complexity (Latif et al., 2016). This
result tempers overly optimistic narratives of
framework evolution by emphasizing the conditional
nature of technological benefits, which depend on
contextual factors such as organizational maturity and
developer expertise.

Collectively, these results demonstrate that the
evolution of ASP.NET Core reflects a broader
realignment of backend frameworks with
contemporary architectural paradigms. The findings
provide a descriptive and interpretive foundation for
the subsequent discussion, which examines these
themes in greater theoretical depth and situates them
within ongoing scholarly debates (Valiveti, 2025).

DISCUSSION

The discussion section offers an extensive theoretical

American Journal of Applied Science and Technology

interpretation of the results, situating them within
broader scholarly debates on software architecture,
framework evolution, and system design. Rather than
reiterating descriptive findings, this section
interrogates their implications, explores counter-
arguments, and articulates a nuanced understanding
of how ASP.NET Core exemplifies and challenges
prevailing paradigms in modern software engineering
(Valiveti, 2025). Given the complexity and
interdependence of the themes involved, the
discussion proceeds through layered analysis that
integrates historical context, theoretical perspectives,
and critical reflection.

A central theoretical implication of the findings
concerns the redefinition of backend frameworks as
adaptive infrastructural substrates rather than static
application platforms. Traditional software
engineering theory often conceptualized frameworks
as stable abstractions that shield developers from
underlying complexity. However, the evolution of
ASP.NET Core suggests a shift toward frameworks that
actively expose and manage complexity through
modular composition and explicit configuration
(Valiveti, 2025). This approach aligns with distributed
systems theory, which emphasizes that complexity
cannot be eliminated but must be explicitly addressed
through architectural design (Kommera, 2013). From
this perspective, ASP.NET Core’s modularity represents
not a simplification but a reallocation of responsibility,
transferring architectural decision-making from
framework designers to application developers.

This reallocation raises important theoretical and
practical questions. On one hand, it empowers
developers to tailor backend architectures to specific
application needs, supporting diverse deployment
scenarios and performance requirements (Valiveti,
2025). On the other hand, it presupposes a level of
architectural literacy that may not be uniformly
distributed across development teams. Critics of highly
modular frameworks argue that excessive
configurability can lead to fragmented codebases and
inconsistent architectural patterns, undermining
maintainability and long-term evolution (Latif et al.,
2016). The literature thus reveals a tension between
flexibility and coherence, suggesting that the benefits
of ASP.NET Core’s design are contingent on effective
governance and shared architectural principles.

The convergence between backend frameworks and
event-driven architecture further complicates this
tension. Event-driven paradigms promise scalability
and responsiveness by decoupling producers and
consumers of information (Kommera, 2020). ASP.NET

316 https://theusajournals.com/index.php/ajast

American Journal of Applied Science and Technology (ISSN: 2771-2745)

Core’s support for asynchronous processing and
middleware composition facilitates the adoption of
such paradigms within mainstream web development
(Valiveti, 2025). However, scholars have long noted
that event-driven systems can be difficult to reason
about, particularly in terms of causality, state
management, and error handling (Charkaoui et al.,
2014). The discussion thus highlights a critical trade-
off: while event-driven integration enhances system
agility, it also demands sophisticated monitoring,
logging, and debugging strategies that extend beyond
traditional request—response models.

Another important dimension of the discussion
concerns the interplay between backend frameworks
and enterprise integration strategies. The literature on
iPaaS adoption emphasizes that modern enterprises
operate within complex ecosystems of legacy systems,
cloud services, and third-party APIs (Kommera, 2015).
In this context, backend frameworks like ASP.NET Core
function as connective tissue, enabling data and
process integration across organizational boundaries.
The discussion interprets this role through the lens of
systems theory, viewing backend frameworks as
mediating structures that balance stability and change
within dynamic environments (Kommera, 2015). From
this perspective, the success of ASP.NET Core is linked
not only to its technical features but also to its capacity
to support evolving integration patterns without
imposing rigid constraints.

The relationship between backend evolution and
frontend transformation offers further theoretical
insight. Studies of Angular’s architectural evolution
illustrate a broader shift toward reactive programming
and modular component design on the client side
(Kodali, 2019; Kodali, 2022). These shifts reflect
changing user expectations for interactivity and
performance, which in turn place new demands on
backend services. The discussion interprets this
dynamic as a form of co-evolution, in which frontend
and backend frameworks adapt reciprocally to
maintain system-level coherence (Shah et al., 2019).
This co-evolution challenges traditional separations
between client and server concerns, suggesting that
architectural decisions must increasingly be evaluated
in terms of end-to-end system behavior rather than
isolated components.

Cross-platform mobile development further amplifies
this interdependence. Comparative studies of cross-
platform frameworks highlight their reliance on
consistent and performant backend APIs to abstract
device-specific variability (Zou and Darus, 2024). The
discussion situates ASP.NET Core within this landscape

American Journal of Applied Science and Technology

as a backend framework that supports such
abstraction through standardized communication
protocols and extensible service design (Valiveti,
2025). However, it also acknowledges counter-
arguments that question whether general-purpose
backend frameworks can adequately address the
performance and security demands of highly
heterogeneous mobile ecosystems (Mehrnezhad and
Toreini, 2019). These critiques underscore the need for
ongoing research into specialized backend
optimizations and security models tailored to mobile
and cross-platform contexts.

The discussion also engages with methodological and
epistemological considerations. The reliance on
literature-based analysis reflects a broader trend in
software engineering research toward integrative and
interpretive studies that synthesize fragmented
knowledge domains (Zein et al., 2023). While such
studies offer valuable theoretical insights, they also
face limitations related to the variability of source
guality and the absence of direct empirical validation.
The discussion therefore emphasizes the importance
of triangulating interpretive findings with empirical
research, including case studies and longitudinal
analyses of real-world system evolution (Kommera,
2021).

Looking toward future research, the discussion
identifies several promising directions. One avenue
involves examining how architectural governance
frameworks can support the effective use of highly
modular backend technologies, mitigating the risks
associated with configurability and complexity (Latif et
al., 2016). Another involves exploring the integration of
Al-driven testing and quality assurance methodologies
with modern backend frameworks, building on
emerging research that highlights the potential of Al to
enhance software reliability and efficiency (Kommera,
2021). These directions reflect a recognition that
framework evolution is an ongoing process shaped by
technological innovation, organizational practices, and
socio-technical dynamics.

In synthesizing these perspectives, the discussion
reinforces the central argument of the article: the
evolution of ASP.NET Core represents a microcosm of
broader transformations in software engineering. It
exemplifies the convergence of backend frameworks
with distributed systems theory, event-driven
architecture, and cross-platform development, while
also illuminating the challenges and trade-offs
inherent in this convergence (Valiveti, 2025). By
engaging deeply with scholarly debates and counter-
arguments, the discussion contributes to a more

317 https://theusajournals.com/index.php/ajast

American Journal of Applied Science and Technology (ISSN: 2771-2745)

nuanced and theoretically informed understanding of
modern software architecture.

CONCLUSION

This article has presented an extensive and
theoretically grounded analysis of the evolution of
backend frameworks, with particular emphasis on the
transition from traditional ASP.NET to ASP.NET Core
and its broader architectural implications. Drawing
exclusively on the provided body of literature, the
study has demonstrated that this evolution cannot be
understood as an isolated technological upgrade but
must be situated within a complex ecosystem of
distributed systems, event-driven architectures,
enterprise integration strategies, and cross-platform
development methodologies (Valiveti, 2025).

The analysis has shown that ASP.NET Core embodies a
paradigmatic shift toward modularity, platform
neutrality, and architectural openness, reflecting long-
standing principles articulated in distributed systems
theory and contemporary software engineering
research (Kommera, 2013; Kommera, 2020). At the
same time, the study has highlighted the reciprocal
influence between backend frameworks and frontend
and mobile development technologies, underscoring
the systemic and co-evolutionary nature of modern
software ecosystems (Kodali, 2019; Zou and Darus,
2024).

Importantly, the article has avoided a purely
celebratory narrative by engaging critically with the
challenges and tensions associated with these
transformations. Issues of complexity management,
architectural governance, and organizational capability
emerge as enduring concerns that condition the
realization of technological benefits (Latif et al., 2016).
By articulating these challenges alongside the
opportunities presented by modern frameworks, the
study contributes to a balanced and nuanced
understanding of backend evolution.

In conclusion, the evolution of ASP.NET Core serves as
a compelling case study of how backend frameworks
adapt to and shape broader architectural paradigms.
The insights developed in this article provide a
foundation for future research and practice,
encouraging scholars and practitioners alike to
approach framework selection and architectural
design as integrative, theory-informed endeavors
rather than purely technical choices.

REFERENCES

American Journal of Applied Science and Technology

1.

10.

11.

318

Market Share of Mobile Operating Systems
Worldwide from 2009 to 2024, by Quarter.
Available online: https://archive.today/iVOuN
(accessed on 11 March 2025).

Kommera, A. R. (2013). The Role of Distributed
Systems in Cloud Computing: Scalability, Efficiency,
and Resilience. NeuroQuantology, 11(3), 507-516.

Kodali, N. (2022). Angular’'s Standalone
Components: A Shift Towards Modular Design.
Turkish Journal of Computer and Mathematics
Education, 13(1), 551-558.

Charkaoui, S., Adraoui, Z., Benlahmar, E. H. (2014).
Cross-platform mobile development approaches.
Proceedings of the Third I|EEE International
Colloquium in Information Science and
Technology, 188-191.

Valiveti, S. S. S. (2025). Evolution of ASP.NET to
ASP.NET Core: Tools, Strategies, and
Implementation Approaches. Proceedings of the
2025 IEEE 2nd International Conference on
Information Technology, Electronics and
Intelligent Communication Systems, 1-7.

Kommera, A. R. (2015). Future of enterprise
integrations and iPaa$S adoption.
NeuroQuantology, 13(1), 176-186.

Zein, S., Salleh, N., Grundy, J. (2023). Systematic
reviews in mobile app software engineering: A
tertiary study. Information and Software
Technology, 164, 107323.

Latif, M., Lakhrissi, Y., Nfaoui, E. H., Es-Sbai, N.
(2016). Cross platform approach for mobile
application development: A survey. Proceedings of
the International Conference on Information
Technology for Organizations Development, 1-5.

Kodali, N. (2019). Angular lvy: Revolutionizing
Rendering in Angular Applications. Turkish Journal
of Computer and Mathematics Education, 10(2),
2009-2017.

Mehrnezhad, M., Toreini, E. (2019). What Is This
Sensor and Does This App Need Access to It?
Informatics, 6, 7.

Zou, D., Darus, M. Y. (2024). A Comparative
Analysis of Cross-Platform Mobile Development
Frameworks. Proceedings of the IEEE 6th
Symposium on Computers and Informatics, 84-90.

https://theusajournals.com/index.php/ajast

American Journal of Applied Science and Technology (ISSN: 2771-2745)

12.

13.

14.

15.

16.

17.

18.

19.

Kommera, A. R. (2020). The Power of Event-Driven
Architecture: Enabling Real-Time Systems and
Scalable Solutions. Turkish Journal of Computer
and Mathematics Education, 11, 1740-1751.

Shah, K., Sinha, H., Mishra, P. (2019). Analysis of
Cross-Platform Mobile App Development Tools.
Proceedings of the IEEE 5th International
Conference for Convergence in Technology, 1-7.

Stanojevic, J., Sosevic, U., Minovic, M,
Milovanovic, M. (2022). An Overview of Modern
Cross-platform Mobile Development Frameworks.
Central European Conference on Information and
Intelligent Systems, 489-497.

Mobile Application Market to Grow by USD 2.63
Trillion from 2025-2029, Driven by Smartphone
Penetration, Report on How Al is Driving Market
Transformation. Available online:
https://archive.today/kPoSt (accessed on 11
March 2025).

Kommera, A. R. (2021). Enhancing Software
Reliability and Efficiency through Al-Driven Testing
Methodologies. International Journal on Recent
and Innovation Trends in Computing and
Communication, 9(8), 19-25.

Khachouch, M. K., Korchi, A., Lakhrissi, VY.,
Moumen, A. (2020). Framework Choice Criteria for
Mobile Application Development. Proceedings of
the International Conference on Electrical,
Communication, and Computer Engineering, 1-5.

Cross-Platform Mobile Frameworks Used by
Developers Globally 2019-2023. Available online:
https://archive.ph/x200k (accessed on 11 March
2025).

Number of Apps Available in Leading App Stores
2024. Available online: https://archive.ph/2itBr
(accessed on 11 March 2025).

American Journal of Applied Science and Technology

319

https://theusajournals.com/index.php/ajast

