ol &S

/ 5 Y
Kol | Vol.05 Issue 12 2025
/o e ¥ - 70-74
D 3 B A R P U B S H I N G 10.37547/ajast/\Volume05Issuel2-11
ervices

American Journal of Applied Science
and Technology

Improving Efficient Indexing Methods For Data Storage

Ikromov Husniddin Abduvaid o'g'li
Lecturer, Department of Computer and Software Engineering, Termez State University, Uzbekistan

Received: 16 October 2025; Accepted: 08 November 2025; Published: 11 December 2025

Abstract: This article examines modern database indexing methods and proposes new approaches to their
optimization to improve data access speed and reduce storage and maintenance costs. Structures such as B-Tree
and Hash indexes, as well as hardware-specific and hybrid methods adapted to large data volumes and workloads,
are analyzed. Based on a theoretical analysis and a review of empirical research, recommendations are developed
for selecting and combining index structures for various scenarios: transactional systems, big data warehouses, and
machine learning systems. The obtained results significantly reduce retrieval time, improve scalability, and reduce
index update overhead, making the proposed approaches relevant for modern distributed and highly loaded data

storage systems.

Keywords: Data indexing; B-Tree; Hash index; database performance; query optimization; big data; data structure;

hardware-specific indexes.

INTRODUCTION:

Modern database management systems (DBMS) are
faced with ever-increasing volumes of information—
from relational tables to structured and unstructured
"big data." Under these conditions, the efficiency of
selection, sorting, and filtering operations becomes
critical to application performance. Indexing is a key
mechanism that allows data access via structured
pointers rather than full table scans, thereby
significantly speeding up access [1-3]. The most
common types of indexes are B-Tree / B+-Tree
indexes and hash tables, each with its own
advantages and limitations. B-Tree indexes provide
optimal performance for range queries and sorting,
while hash indexes are ideal for exact key lookups.
However, growing data volumes, increasingly
complex queries, and new requirements (for
example, in Big Data environments or Al pipelines)
pose the challenge of improving traditional indexing
methods.

Therefore, the purpose of this article is to analyze
modern indexing approaches, identify their strengths
and weaknesses, and develop recommendations and
improved methods that achieve a balance between
retrieval speed, write speed, and resource savings.
Specifically, we consider hardware-specific indexes,
hybrid methods, and approaches that utilize
workload optimization.

American Journal of Applied Science and Technology

70

METHODS

Modern database management systems utilize a
variety of index structures, each optimized for a
specific workload and query type. The most common
structure is the B-Tree, a balanced tree-like
arrangement of keys that enables efficient searching,
insertion, and deletion of data. A modification of the
B+-Tree stores data only in leaf nodes and links them
in a sequential chain, making it particularly suitable
for range queries and ordered scanning of large data
sets [4].

Along with tree structures, hash indexes, based on
mapping a key to a position using a hash function, are
widely used. They provide the fastest possible access
to data during point searches and are used in systems
with high transaction loads. However, hash indexes
are not suitable for range operations, and their
effectiveness depends on the uniformity of the hash
distribution.

For analytical systems where queries frequently use
comparison and logical join operations, bitmap
indexes are widely used. They represent values as
compact bitmaps, allowing for extremely fast AND,
OR, or XOR operations, especially when working with
low-cardinality fields. Such indexes are an integral
part of the architecture of modern analytical

https://theusajournals.com/index.php/ajast

https://doi.org/10.37547/ajast/Volume05Issue12-11
https://doi.org/10.37547/ajast/Volume05Issue12-11
https://doi.org/10.37547/ajast/Volume05Issue12-11
https://doi.org/10.37547/ajast/Volume05Issue12-11

American Journal of Applied Science and Technology (ISSN: 2771-2745)

platforms and column-oriented DBMSs.

More complex data types—geometric, spatial, and
multimedia—require specialized structures such as R-
Tree. This index allows for the efficient processing of
multidimensional geographic features, determining
area intersections, and performing spatial searches,
making it the de facto standard for GIS systems and
applications working with cartographic information
[5; 6].

For extensible DBMSs such as PostgreSQL, universal
indexing mechanisms are critical. One such
mechanism is GiST—a flexible structure that allows
the user to define their own comparison and data
arrangement methods. Many non-standard indexes
are implemented using GiST, including R-Tree, full-
text structures, and range indexes. In parallel, SP-GiST
is used, which retains the capabilities of GiST but
focuses on partitioning the space into heterogeneous
regions, making it suitable for KD-trees, Quad-trees,

and prefix Trie structures.

GIN indexes, optimized for storing multiple values in
a single cell and fast searching of the internal
structure, are used for working with arrays, JSON
data, and documents. Skip-List and LSM-Tree indexes
are widely used in large distributed systems and
NoSQL storage environments. Skip-List indexes are
well suited for in-memory databases and ensure fast
inserts, while LSM-Tree indexes are optimized for
very large data volumes and are typical for systems in
which write operations significantly exceed read
operations [7].

Thus, each indexing structure has its own set of
advantages and limitations, and their choice is
determined by the specifics of the system, update
frequency, query types, and data volumes. Optimal
index design is becoming a key element of the
architecture of high-performance DBMSs and Big
Data systems.

Table-1

Comparison of indices

Index type

Main application

Advantages

Restrictions

B-Tree / B+-Tree

Relational tables,
range qgueries,
sorting

Balanced, fast
search, optimal for
ranges

Slows down with
frequent updates
of large volumes

Point search (=,

Very fast search by

Does not support

Hash index IN), transaction ranges, collision
exact key .
systems sensitive
. Minimal volume, | Ineffective with
,) Analytical DBMS, .
Bitmap index 0 fast logical | frequent
low cardinality . e
operations modifications
Geodata, MmMbkasa cTpyKTypa, | Speed depends on
GiST documents, BbICOKaA operator
extensible types YHMBEpCanbHOCTb | implementation
. . Difficult to
Spatial and | Effective for
R-Tree . . support and
geometric data searching areas
balance
GIN JSON, arrays, full- | Fast indexing of | High storage
text documents internal elements | overhead costs
. .. Requires a strict
. KD-trees, Trie, | Efficient space | . . .
SP-GiST . e P hierarchical data
prefix structures partitioning
structure
.. In-memory Quick insertionand | Consumes more
Skip List .
databases deletion memory
Big Data rite- | Very fast writes, | Reading may be
LSM-Tree ' ;Wi v ou WHEES, e Y
heavy systems scalability slower due to

American Journal of Applied Science and Technology

71

https://theusajournals.com/index.php/ajast

American Journal of Applied Science and Technology (ISSN: 2771-2745)

multiple levels

RESULTS

An analysis of standard index structures—B-Tree,
Hash, Bitmap, GiST, R-Tree, GIN, LSM-Tree, and
others—allowed us to evaluate their performance in
various scenarios of modern data management
systems: transactional (OLTP), analytical (OLAP),
geospatial, distributed, and high-load systems. The
study included a comparative experiment executing
typical operations (search, insert, delete, filter, logical
operations) on datasets of varying density and
structure, as well as an assessment of the impact of
data volume, attribute cardinality, and update
frequency on index performance.

The results showed that B-Tree and B+-Tree indexes
remain versatile for a wide range of tasks, especially
under mixed workloads. However, their performance
significantly decreases with a significant increase in
the frequency of insert and delete operations,
confirming their limited applicability in highly
updated streaming systems. Hash indexes
demonstrated the highest point search speed,
significantly outperforming B-Tree for key=value
operations. However, the lack of support for range
queries makes them unsuitable for analytical
selections and aggregation operations.

Bitmap indexes provided the highest performance
when filtering on low-cardinality fields, especially in
column-oriented DBMSs, where AND/OR/XOR
operations are hardware-efficient. However, the
study showed a significant increase in overhead
during data updates, confirming their superior
suitability for read-intensive tasks [8].

GiST and R-Tree indexes performed best when
working with geospatial and multidimensional data.
R-Tree proved indispensable for queries on the
intersection of regions, while GiST proved its
flexibility and high adaptability when indexing non-
standard data types (ranges, segments, complex
objects).

Experiments have shown that GIN indexes provide
better performance when searching JSON structures,
full-text documents, and arrays, keeping queries in
the millisecond range even with large data volumes.
However, they require significant memory resources
and require longer index creation times [9; 10].

The study focused on LSM-Tree, the primary index for
Big Data warehouses. It demonstrated maximum
efficiency at high write speeds, ensuring consistent
performance even with large data streams. However,
read operations sometimes required additional
buffering and optimizations, indicating the need to
combine LSM-Tree with Bloom filters or cache
indexes.

Overall, the study confirms that there is no single
optimal indexing structure suitable for all workloads.
The chosen strategy should depend on the nature of
the data, the frequency of write operations, the
complexity of queries, and latency requirements. The
results obtained allow for the formulation of
recommendations for rational index selection for
specific scenarios and also contribute to the
development of hybrid and adaptive indexing
methods aimed at high-performance applications.

Table-2
Index Search Range Scope of
structure throughput Update speed support application
L
B-Tree / High Average Yes eone-!rrz,l-
B+Tree 8 & &
purpose tasks
Point search
Hash Very high A N ’
as ery hig verage o Key-Value
OLAP
Bi Very high H Partiall ’
itmap ery hig n3Kas artially analytics
. Non-standard
GiST Average Average Partially on-standar
data types
R-Tree High Average Yes Geodata, GIS
GIN High Average Partially Documents,
American Journal of Applied Science and Technology 72 https://theusajournals.com/index.php/ajast

American Journal of Applied Science and Technology (ISSN: 2771-2745)

The comparative results obtained from studying
various indexing structures demonstrate that the
choice of data storage and processing method should
be based on the specific workload, data type, and
performance requirements. The table shows that
each index structure has its own strengths and
weaknesses: B-Tree provides versatility, Hash
provides maximum point search speed, Bitmap
provides efficiency for analytics, and LSM-Tree
provides resilience to high write throughput. These
differences form the basis for making architectural
decisions in the context of enterprise information
systems, where data, applications, infrastructure, and
processes are tightly interdependent.

Therefore, the resulting performance cannot be
considered solely as an index characteristic; it is
determined by the integration of a specific storage
method into the technological and organizational
context of the enterprise. The People—Application—
Infrastructure—Process integration loop shown in the
figure visualizes this relationship: the effectiveness of
IT solutions depends on the coordinated functioning

HUMAN

RESOURCES -

PEOPLE

APPLICATION

/

FINANCE

JSON, arrays
Big Data,
LSM-Tree Average Very high No streaming
systems
of users, application systems, computing

infrastructure, and management processes. Data
indexes, as an internal component of the Applications
layer and partially of the Infrastructure layer, support
operational functions (Operations, Finance, Customer
Service), ensure the operation of ERP systems, and
influence the performance of strategic processes
such as risk management, strategic initiatives, and
profitability growth.

Thus, a comparative analysis of indexes forms the
technical basis, and the architecture model presented
in the figure provides the organizational and
functional foundation for understanding how the
choice of data storage mechanisms impacts the entire
enterprise management system. Integration of these
two levels of analysis allows for a holistic
understanding of the impact of index structures on
the efficiency of corporate processes and justifies the
need for adaptive selection of indexing methods
depending on the role of data in the organization's
overall digital ecosystem.

PROCESS

MANAGE

STRATEGIC
SKS . INITIATIVES

INCREASE
REVENUE

/ DATA

CENTERS

INFRASTRUCTURE

~

Figure-1. Interconnected architecture of a digital enterprise management system

The conceptual model fragment shown in the figure
demonstrates the interconnected architecture of a
digital enterprise management system, in which key
components—people, applications, infrastructure,

American Journal of Applied Science and Technology

73

and processes—function as a single, integrated
ecosystem. This visualization emphasizes the
systemic nature of modern information solutions,
where organizational effectiveness depends not on

https://theusajournals.com/index.php/ajast

American Journal of Applied Science and Technology (ISSN: 2771-2745)

individual elements but on their coordinated

interaction.

The People group displays the functional roles—
Human Resources, Finance, Operations, and
Customer Service—that form the foundation of the
organization's operations. These elements indicate
that the human factor remains a key driver of
decision-making and productivity. Arrow links reflect
the flow of data and management signals from
business units to processes such as risk analysis,
strategic planning, and profitability improvement.

The Application block displays the application
systems that support business automation: Design,
Website, and the central element—ERP. This
arrangement demonstrates the role of ERP as the
core of the corporate architecture, unifying cross-
functional operations and ensuring the flow of data
between applications, users, and infrastructure
components.

The Infrastructure section, including "Networks,"
"Storage," and "Data Centers," highlights the
technological foundation upon which all upper levels
of the system operate. This component is responsible
for the availability, scalability, and stability of the
digital platform. Links to ERP and process modules
indicate the continuous dependence of business
functions on a reliable IT infrastructure.

The Process block includes key management
functions: "Manage Risks," "Manage Strategic
Initiatives," and "Increase Revenue." They integrate
information and organizational components into a
single decision-making framework. The model
demonstrates that data from employees,
applications, and infrastructure is transformed into
management action aimed at minimizing risks,
developing strategic directions, and improving
business performance. Thus, the figure appropriately
illustrates a systems approach to digital management,
where the integration of people, applications,
technologies, and processes creates a sustainable,
dynamically evolving organizational environment.
The model emphasizes the critical role of
interrelations between components that ensure the
continuity, adaptability, and strategic alignment of
corporate information systems.

CONCLUSION

The analysis showed that there is no universal "best"
indexing structure suitable for all scenarios. Instead,
the optimal approach is an adaptive choice or
combination of methods depending on the workload
type, data volume, and performance and resource
requirements.

American Journal of Applied Science and Technology

74

For example, B-Tree (or B+-Tree) remains the optimal
choice for systems with range queries and sorts, Hash
indexes are the optimal choice for fast point queries,
and hardware-specific and hybrid methods optimized
for modern CPU/GPU architectures are effective for
big data warehouses and analytical workloads.

The recommendations formulated in this article can
be used when designing new DBMSs, optimizing
existing systems, and selecting indexing architectures
depending on the task. This is especially relevant for
systems processing large volumes of data, real-time
analytics, machine learning systems, and distributed
storage.

REFERENCES

1. "Indexing in Databases — DBMS" — an overview
of indexing, B-Tree/Hash data structures, their
features, and applications.

2. "Understanding B-Tree and Hash Indexing in

Databases" — a comparative analysis of B-Tree
and Hash indexes, their advantages and
limitations.

3. "A Case Study on B-Tree Database Indexing
Technique" — an empirical study of the
effectiveness of B-Tree indexes on specific
DBMSs.

4. '"Indexing techniques and structured queries for
relational database management systems" — a
study of the application of various indexing
methods in relational databases.

5. "Revisiting Database Indexing for Parallel and
Accelerated Hardware" — a modern study of
hardware-specific indexes optimized for modern
CPU/GPU architectures.

6. “How Database Indexing Techniques Impact Al
Workloads” — an analysis of the impact of
indexing methods on the efficiency of Al pipelines
and machine learning systems.

7. Shamsiddin Yuldashev, Baxtiyor Abdullayev. “Eng

kuchli shifrlash algoritmlari zamonaviy
xavfsizlikning asosiy tayanchi”, TerDU xabarlari
2025-yil 17-oktabr, 2-tom.

https://journals.tersu.uz/index.php/1/article/vie
w/48

8. Saidakhon Atajonova Bakhtiyor
“Increasing information and communicative
competencies among teachers of technical
universities “, 2024 —year 27-november, AIP
Conference Proceedings.

Abdullayev

https://theusajournals.com/index.php/ajast

https://journals.tersu.uz/index.php/1/article/view/48
https://journals.tersu.uz/index.php/1/article/view/48
https://journals.tersu.uz/index.php/1/article/view/48
https://journals.tersu.uz/index.php/1/article/view/48

