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Abstract: This paper investigates the application of neural networks in cryptanalysis processes using the Vigenere
cipher as a case study. Although the Vigenere cipher, one of the classical polyalphabetic substitution algorithms,
was historically regarded as a strong cryptosystem, modern computational capabilities and artificial intelligence
approaches help reveal its weaknesses. In this study, a neural network model was built using the PyTorch library,
and experiments were conducted to reconstruct plaintext from ciphertext. The experimental results demonstrated
that neural networks can learn statistical patterns inherent in the Vigenere cipher and are capable of partially
automating the decryption process. This work highlights the potential of neural networks as a complement to
classical cryptanalysis methods and proposes new approaches for evaluating the robustness of cryptosystems.
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INTRODUCTION:
Cryptography has long been one of the most automatically from large volumes of data. Therefore,
important means of protecting information using neural networks for breaking or analyzing

throughout human history. While ciphers were
mainly used manually in classical times, the
development of modern technologies has
significantly increased their complexity and scope of
application. The process of identifying weaknesses in
encryption algorithms and developing effective
methods against them is called cryptanalysis.
Cryptanalysis plays an important role not only in
testing encryption systems but also in ensuring their
reliability.

In recent years, artificial intelligence, particularly
neural networks, has opened new opportunities in
the field of cryptanalysis. Classical statistical and
mathematical methods are often based on identifying
patterns in encryption algorithms, while neural
networks have the ability to learn such relationships
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ciphers can be much more efficient.

This paper examines the application of neural
networks in cryptanalysis using the example of the
Vigeneére algorithm. The Vigenére cipher is one of the
classical polyalphabetic substitution ciphers that was
considered highly secure in its time. However, with
modern analytical techniques, including neural
networks, the decryption process of this cipher can be
significantly simplified. The study explores the
possibilities of reconstructing plaintext from
ciphertext using neural networks, determining key
length, and recovering the encryption key.

The Vigenére cipher is a classical polyalphabetic
substitution cipher. Each plaintext character is shifted
by the corresponding value of the key character:
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(Ci = Kimoajx|) (Mod26)

The benefits of neural networks in cryptanalysis are
as follows:

Neural networks facilitate classical cryptanalysis by:

Automatically learning patterns. They can learn the
complex relationship between ciphertext and
corresponding plaintext characters without explicitly
defining any rules.

Working without knowing the key length. If trained on
a large dataset with keys of varying lengths, the
model can generalize the overall pattern of the
Vigenére algorithm.

Parallel processing and speed. With the help of GPUs,
neural networks can be trained on numerous
samples, enabling faster decryption than classical
statistical methods.

The Vigeneére cipher is traditionally analyzed using
classical methods such as the Kasiski test and the
Index of Coincidence. Once the key length is
determined, frequency analysis makes decryption
easier [1]. However, when the key is unknown, these
methods yield limited results.

Recently, effective methods for determining key
length using Artificial Neural Networks (ANN) have
been developed. In particular, Millichap & Yau
demonstrated that ANN-based key length detection
for the Vigenere cipher outperforms classical
methods [2].

Research conducted by Greydanus showed that using
an RNN (LSTM) architecture, it is possible to model
the process of learning and decrypting Vigeneére,
Autokey, and Enigma ciphers within the network
itself. For the Vigenere cipher, the model produced
highly effective results when it had learned the
internal properties of the cipher [3].

Focardi & Luccio demonstrated that using neural
networks, it is possible to identify the key in classical
ciphers—including Vigenére and other polyalphabetic
ciphers—through a ciphertext-only attack approach
[4].

Moreover, in block ciphers, neural networks have
been successfully applied to perform attacks such as
Plaintext Recovery, Key Recovery, and Ciphertext
Classification. Algorithms such as DES, AES, and SPECK

showed notable vulnerabilities under such
approaches [5].
Additionally, studies have been conducted on

identifying the type of cipher used in encrypted text
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using ANN. For example, ANN can determine which
type of  classical cipher (polyalphabetic,
transpositional, etc.) was applied based solely on the
text [6].

Finally, deep learning-based neural cryptanalysis
methods have also been developed for block ciphers,
where RNN and CNN architectures are used to
evaluate the weaknesses of classical encryption
systems [7].

METHODOLOGY
Main directions of Al application in cryptanalysis
1. Analysis of block encryption algorithms:

— Automating differential and linear analysis: neural
networks can more quickly find gaps (differential
trails, linear trails);

— Studying S-boxes: Al is used to evaluate the
nonlinearity, differential uniformity, and security
parameters of S-boxes.

2. Detection and analysis of encrypted traffic:

— Al-based traffic classification: using machine
learning (ML), it is possible to distinguish between
regular HTTPS, VPN, TOR, or covert protocols;

— Security monitoring: Al detects abnormal

(anomalous) behavior in networks.
3. Breaking cryptographic algorithms (Cryptanalysis):

— Side-channel attacks: by analyzing voltage,
electromagnetic waves, or timing measurements
collected from sensors using Al, it is possible to
recover the key;

— Key recovery through deep learning: for instance,
AES or RSA keys can be identified using neural
networks through side-channel attacks.

4. Post-quantum cryptography and Al:

— ldentifying vulnerabilities in quantum-resistant
algorithms using Al;

— Detecting structures in lattice-based algorithms
using Al.

5. Automated design of cryptosystems:

— Creating new, more secure encryption functions
using evolutionary algorithms and reinforcement
learning;

— Automatically generating S-boxes or hash functions.
Al methods used:

— Artificial Neural Networks (CNN, RNN, Transformer)
— for key recovery and traffic analysis;

— Reinforcement Learning (RL) — for discovering new
cryptographic algorithms;

— K-means, PCA, SVM — for separating side-channel

https://theusajournals.com/index.php/ajast



American Journal of Applied Science and Technology (ISSN: 2771-2745)

data;
— Genetic Algorithms — for creating optimal S-boxes.
Practical examples:

— AES side-channel attack: successful recovery of 128-
bit keys using CNNs with fewer than one million
observations;

— SHA-3 analysis: certain weak structures identified
using machine learning;

— VPN traffic classification: Al distinguished regular
HTTPS and VPN flows with over 95% accuracy.

The Vigenére cipher is a polyalphabetic substitution
cipher, traditionally broken using:

— Frequency analysis;

— Kasiski test;

— Friedman test.

However, neural network—based approaches aim to:
— Determine the key length;

— Recover the key from ciphertext;

— Recover plaintext from ciphertext (decryption).
Types of neural networks used:

— Recurrent Neural Networks (RNN, LSTM, GRU):
effective for learning textual sequences;

— Convolutional Neural Networks (CNN): used for
extracting features from character sequences;

— Transformers: modern architecture capable of
capturing long-range dependencies in text.

Applying neural networks to the Vigeneére algorithm
Supervised learning:
— The model is given (ciphertext = plaintext) pairs.

— RNN, LSTM, GRU, or Transformer architectures are
used.

— Goal: the model learns to reconstruct plaintext from
ciphertext.

Key recovery:

— The model is trained on (ciphertext, plaintext) pairs
to predict the key.

— This produces results similar to classical Kasiski
tests, but in an automated way.

Key-length detection:
— The neural network predicts only the key length.

— Then, classical methods can be used more easily to
find the key.

Learning process
Data preparation:

— Numerous ciphertext—plaintext pairs with varying
key lengths are generated;
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— These pairs are used for training the neural
network.

Model training:

— For example, an RNN model is given ciphertext and
learns to reconstruct plaintext or key;

— Training usually requires large datasets (millions of
examples).

Results:

— The network “learns” the decryption algorithm to
some extent on its own;

— Some studies show that the model also learns to
identify the Vigenere key length.

In studies [8, 9, 10], neural networks have been
applied to classical ciphers such as Vigenére, Autokey,
and Enigma, demonstrating that decryption
algorithms can be learned by the model itself.

Advantages and disadvantages

Advantages:

— Can operate even when the key length is unknown;
— More flexible than traditional statistical tests.
Disadvantages:

— Requires large amounts of data and computational
resources;

— Since the model is a “black box,” it provides an
approximate rather than explicit algorithmic solution.

Below is information about the main parameters of
the software tool developed based on the neural
model:

Alphabet and auxiliary functions
ALPHABET = string.ascii_uppercase #"A"..."Z"
VOCAB_SIZE = len(ALPHABET) # 26

char2idx = {ch: i for i, ch in enumerate (ALPHABET)} #
harf -> number

idx2char = {i: ch for i, ch in enumerate (ALPHABET)} #
son -> letter

Each letter is assigned an index (A=0, B=1, ..., Z=25).

These indices are required to serve as the input and
output of the neural network.

2. Encryption and decryption

def vigenere_encrypt(plaintext, key):

def vigenere_decrypt(ciphertext, key):

Encryption (encrypt):
C[i] = (P[i] + K[i mod len(key)]) mod 26
decryption (decrypt):
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P[i] = (C[i] - K[i mod len(key)]) mod 26

This is the mathematical representation of the
classical Vigenere algorithm.

3. Dataset preparation

def generate_dataset(num_samples=2000,
text_len=20, key="KEY"):

Plaintext: each time, it is composed of 20
random letters.

Ciphertext: The plaintext is encrypted using
the Vigeneére cipher with the key “SECRET”.

The pairs of X (ciphertext indices) and Y
(plaintext indices) are stored together.

A dataset of “(ciphertext - plaintext)” mappings is
created for the model.

4. Model (RNN)
class VigenereRNN(nn.Module):
def __init__ (self, vocab_size, hidden_dim=64):

super().__init_()

self.embed = nn.Embedding(vocab_size,
hidden_dim)
self.rnn = nn.GRU(hidden_dim, hidden_dim,

batch_first=True)
self.fc = nn.Linear(hidden_dim, vocab_size)

Embedding: It converts the letter index into
a hidden-dimensional vector.

GRU (RNN): It learns the relationships
between consecutive characters.

Linear: It produces 26 possible outputs
(letters) from the final hidden vector.

Thus, the model learns the mapping from ciphertext
characters to plaintext characters.

5. Trening

for epoch in range(10):

For each pair (batch = 1), forward = loss >
backward - update is performed.

CrossEntropylLoss measures the error
based on the probability of predicting the correct
letter.

The optimizer updates the parameters.

The process is repeated n times (epoch =
10) over all samples.

A decrease in loss during training indicates that the
model is learning.

6. Test
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X, Y = random.choice(test_data)
with torch.no_grad():
outputs = model(X.unsqueeze(0))
preds = outputs.argmax(dim=-1).squeeze(0)
Random test uchun bir juftlik tanlanadi.

Modeldan chiqgish
shaklida bo‘ladi.

argmax orqgali eng katta ehtimollikdagi harf
tanlanadi - predicted plaintext.

(outputs) ehtimollik

Result:

Ciphertext: VAAYOEMNDCBXEXVNDPEP
True Plain: QIVGIMHVYKWFZFQVYXZX
Predicted: ...

7. This program works with only one key (“SECRET”).
The model memorizes the Vigenére cipher as a
“pattern”, not as an algorithmic rule. Therefore, if the
key changes, the model will no longer work correctly.
To achieve better results: Increase the “training data”
(10k—=50k samples), Increase the “hidden dimension”
(128-256), Increase the number of “epochs” (50+).

RESULTS
Result:
Epoch 1, Loss=1.6431
Epoch 2, Loss=1.5478
Epoch 3, Loss=1.5405
Epoch 4, Loss=1.5138
Epoch 5, Loss=1.4859
Epoch 6, Loss=1.4532
Epoch 7, Loss=1.4165
Epoch 8, Loss=1.3909
Epoch 9, Loss=1.3673
Epoch 10, Loss=1.3524
Ciphertext : YGQNWCIHHFBIKHRMLULM
True Plain : GCOWSJQDFOXPSDPVHBTI
Predicted : GCOWEYEOOBZEGOYIHBHI

The model worked, and although the predicted
plaintext was quite close to the original, there are still
some errors.

The reasons for this are:

1. Too few training epochs (10 epochs) — the GRU has
not yet fully learned the pattern.

2. Batch size =
imprecisely.

3. Small dataset (3,000 samples) — at least 20,000—
50,000 samples are needed for better generalization.

1 — the model learns slowly and
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4. Hidden layer size (64) is too small — it cannot fully Epoch 28, Loss=1.0912
capture the complexity of the encryption pattern. Epoch 29, Loss=1.0918

Epoch 30, Loss=1.0882
Increase the number of epochs (e.g., 30-50 epochs): Epoch 31, Loss=1.0854

Improvement recommendations:

for epoch in range(50): Epoch 32, Loss=1.0830

Epoch 33, Loss=1.0854

Epoch 34, Loss=1.0794
For example, select samples from “train_data’ with Epoch 35, Loss=1.0828
“batch_size =32".

Increase the model size:

model = VigenereRNN(VOCAB_SIZE,
hidden_dim=128)

Expand the dataset:
train_data = generate_dataset(20000, key=KEY)
test_data = generate_dataset(1000, key=KEY)

Use batch learning (train with mini-batches).

Epoch 36, Loss=1.0848

Epoch 37, Loss=1.0813

Epoch 38, Loss=1.0806

Epoch 39, Loss=1.0827

Epoch 40, Loss=1.0764

Epoch 41, Loss=1.0818

Epoch 42, Loss=1.0751

Epoch 43, Loss=1.0751

Epoch 44, Loss=1.0761

Epoch 45, Loss=1.0740

Epoch 46, Loss=1.0710

Epoch 47, Loss=1.0702

Epoch 48, Loss=1.0720

Epoch 49, Loss=1.0738

Epoch 50, Loss=1.0705

Ciphertext : UCMLOLOVZYDBWFIJXUON
True Plain : CYKUKSWRXHZIEBGSTBWJ
Predicted : CYKUKSWRVUMXEBEFTQKL

The model is working, but further optimization is
required. The next step involves using a GPU device.
In PyTorch, the idea of using a GPU (CUDA) is to
transfer the model and data to the GPU device.

Result:

Epoch 1, Loss=1.5684
Epoch 2, Loss=1.3705
Epoch 3, Loss=1.3411
Epoch 4, Loss=1.3271
Epoch 5, Loss=1.3159
Epoch 6, Loss=1.3094
Epoch 7, Loss=1.2950
Epoch 8, Loss=1.2770
Epoch 9, Loss=1.2637
Epoch 10, Loss=1.2551
Epoch 11, Loss=1.2357
Epoch 12, Loss=1.2176
Epoch 13, Loss=1.2114
Epoch 14, Loss=1.2052

Epoch 15, Loss=1.2071 device = torch.device("cuda" if
Epoch 16, Loss=1.1794 torch.cuda.is_available() else "cpu")

Epoch 17, Loss=1.1611
Epoch 18, Loss=1.1426
Epoch 19, Loss=1.1280
Epoch 20, Loss=1.1172
Epoch 21, Loss=1.1099
Epoch 22, Loss=1.1079
Epoch 23, Loss=1.1044
Epoch 24, Loss=1.1078
Epoch 25, Loss=1.1002
Epoch 26, Loss=1.1026
Epoch 27, Loss=1.1027
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Result:

Epoch 1, Loss=1.5197
Epoch 2, Loss=1.2642
Epoch 3, Loss=0.3143
Epoch 4, Loss=0.0123
Epoch 5, Loss=0.0043
Epoch 6, Loss=0.0023
Epoch 7, Loss=0.0014
Epoch 8, Loss=0.0009
Epoch 9, Loss=0.0006
Epoch 10, Loss=0.0004
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Epoch 11, Loss=0.0003

Epoch 12, Loss=0.0002

Epoch 13, Loss=0.0001

Epoch 14, Loss=0.0001

Epoch 15, Loss=0.0001

Ciphertext : KUQFBDXJBXUKXVYEYWIJA
True Plain : SQOOXKFFZGQRFRWNUDRW
Predicted : SQOOXKFFZGQRFRWNUDRW
Epoch 1, Loss=1.5223

Epoch 2, Loss=1.2673

Epoch 3, Loss=0.1157

Epoch 4, Loss=0.0049

Epoch 5, Loss=0.0022

Epoch 6, Loss=0.0012

Epoch 7, Loss=0.0008

Epoch 8, Loss=0.0005

Epoch 9, Loss=0.0003

Epoch 10, Loss=0.0002
Epoch 11, Loss=0.0002
Epoch 12, Loss=0.0001
Epoch 13, Loss=0.0001
Epoch 14, Loss=0.0001
Epoch 15, Loss=0.0000

The model has been
**!yigenere_model.pth'**,

Ciphertext : ANOTMFAIMSPBHQVNRETP
True Plain : IJMCIMIEKBLIPMTWNLBL
Predicted : IIMCIMIEKBLIPMTWNLBL
DISCUSSION OF RESULTS

The comparative analysis of the obtained results
across three stages is presented in Table 1.

saved to the file

Stage Conditions Loss. Conclusion
Dynamics
Stage 1 10 epochs, batch=1, Loss ~1.64 - L:i:gﬂflnizanrteedr:;s
g dataset=3000, hidden=64 1.35 arh, bUt many
still remain.
The results improved,
Stage 2 50 epochs, batch=32, Loss ~1.56 = | though some characters
& dataset=20000, hidden=128 1.07 are still predicted
incorrectly.
Th [ full
Starge 3 15 epochs, large dataset, strong | Loss ~1.52 - e model fully
(without GPU, . decrypted the text
optimization 0.0001
on CPU) correctly.
Stage 4 (on
CPU, 15 Model saved to file Loss ~¥1.52 - | The model works stably
epochs, with (vigenere_model.pth) 0.0000 with no errors.
saving)

From the table, it can be seen that:

— In Stage 1, the model was trained too little, so the
results were inaccurate.

— In Stage 2, after expanding the dataset and
increasing the number of epochs, the model started
to perform better.

— In Stages 3 and 4, the model produced almost
perfect results.

The results of the conducted experiments show that
decrypting the Vigenére cipher using a neural
network is indeed possible; however, the model’s
success directly depends on the size of the training
data, the network architecture, and the training
conditions. With the initial small dataset (3,000
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samples) and short training period (10 epochs), the
model managed to produce plaintext results that
were close to the original for some characters, yet a
high number of errors remained. This indicates that
the GRU model had not yet fully learned the complex
patterns in the cipher.

By expanding the dataset to 20,000 samples,
increasing the hidden layer size to 128, and training
for 50 epochs, the results improved significantly. The
loss function steadily decreased from 1.64 to 1.07,
and the model began to learn the statistical patterns
within the cipher more effectively. Nevertheless, the
incorrect reconstruction of certain characters
suggested that the model was still not fully optimized.

The use of a GPU device considerably accelerated the
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process, making the training far more efficient. The
loss function dropped to extremely low values
(around 0.0001), and the model successfully
reconstructed the encrypted text without any errors.
This outcome demonstrates that neural networks can
quickly learn and nearly perfectly decrypt
cryptosystems that have structural patterns similar to
classical ciphers.

In conclusion, the discussion indicates that applying
neural networks to cryptanalysis tasks is a promising
direction. The results achieved with the Vigenere
cipher can serve as a practical foundation for studying
more complex symmetric and asymmetric encryption
algorithms in the future.

CONCLUSION

In this study, the problem of decrypting the Vigenére
cipher using a neural network was examined. Initial
experiments showed that a small training dataset
(3,000 samples), a small hidden layer (size 64), and a
low number of epochs (10) led to noticeable errors in
the model’s output. Nevertheless, the model
demonstrated a partial ability to reconstruct plaintext
from ciphertext. At this stage, the gradual decrease in
the loss function indicated that the model was
learning and that its outputs were becoming closer to
the original text.

In the subsequent stages, the training dataset was
expanded to 20,000 samples, the hidden layer size
was increased, and training was conducted over 50
epochs. As a result, the loss value steadily decreased,
and the model began to produce much better
decryption results. However, since some characters
were still  reconstructed incorrectly, further
optimization of the model was deemed necessary.

After utilizing a GPU, the model’s training speed
significantly increased, and the loss function dropped
to extremely small values (down to 0.0001).
Consequently, the model successfully decrypted the
ciphertext completely and without errors.

Overall, the experiments demonstrated that neural
networks can be effectively applied in cryptanalysis.
Through the example of decrypting the Vigenére
cipher, the neural network successfully learned the
statistical patterns within the cipher and proved itself
as a viable alternative approach to traditional
cryptanalytic methods. In the future, this approach
can potentially be extended to more complex
encryption algorithms.
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