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Abstract: This paper investigates the application of neural networks in cryptanalysis processes using the Vigenere 
cipher as a case study. Although the Vigenere cipher, one of the classical polyalphabetic substitution algorithms, 
was historically regarded as a strong cryptosystem, modern computational capabilities and artificial intelligence 
approaches help reveal its weaknesses. In this study, a neural network model was built using the PyTorch library, 
and experiments were conducted to reconstruct plaintext from ciphertext. The experimental results demonstrated 
that neural networks can learn statistical patterns inherent in the Vigenere cipher and are capable of partially 
automating the decryption process. This work highlights the potential of neural networks as a complement to 
classical cryptanalysis methods and proposes new approaches for evaluating the robustness of cryptosystems. 

 

Keywords: Cryptanalysis, Vigenere cipher, Artificial neural networks, Deep learning, Recurrent Neural Network 
(RNN), Transformer architecture, Cryptography, Machine learning, Key length detection, Decryption algorithm. 

 

INTRODUCTION:

Cryptography has long been one of the most 
important means of protecting information 
throughout human history. While ciphers were 
mainly used manually in classical times, the 
development of modern technologies has 
significantly increased their complexity and scope of 
application. The process of identifying weaknesses in 
encryption algorithms and developing effective 
methods against them is called cryptanalysis. 
Cryptanalysis plays an important role not only in 
testing encryption systems but also in ensuring their 
reliability. 

In recent years, artificial intelligence, particularly 
neural networks, has opened new opportunities in 
the field of cryptanalysis. Classical statistical and 
mathematical methods are often based on identifying 
patterns in encryption algorithms, while neural 
networks have the ability to learn such relationships 

automatically from large volumes of data. Therefore, 
using neural networks for breaking or analyzing 
ciphers can be much more efficient. 

This paper examines the application of neural 
networks in cryptanalysis using the example of the 
Vigenère algorithm. The Vigenère cipher is one of the 
classical polyalphabetic substitution ciphers that was 
considered highly secure in its time. However, with 
modern analytical techniques, including neural 
networks, the decryption process of this cipher can be 
significantly simplified. The study explores the 
possibilities of reconstructing plaintext from 
ciphertext using neural networks, determining key 
length, and recovering the encryption key. 

The Vigenère cipher is a classical polyalphabetic 
substitution cipher. Each plaintext character is shifted 
by the corresponding value of the key character: 
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𝐶𝑖 = (𝑃𝑖 + 𝐾𝑖𝑚𝑜𝑑|𝐾|)(𝑚𝑜𝑑26) 

𝑃𝑖 = (𝐶𝑖 − 𝐾𝑖𝑚𝑜𝑑|𝐾|)(𝑚𝑜𝑑26) 

The benefits of neural networks in cryptanalysis are 
as follows: 

Neural networks facilitate classical cryptanalysis by: 

Automatically learning patterns. They can learn the 
complex relationship between ciphertext and 
corresponding plaintext characters without explicitly 
defining any rules. 

Working without knowing the key length. If trained on 
a large dataset with keys of varying lengths, the 
model can generalize the overall pattern of the 
Vigenère algorithm. 

Parallel processing and speed. With the help of GPUs, 
neural networks can be trained on numerous 
samples, enabling faster decryption than classical 
statistical methods. 

The Vigenère cipher is traditionally analyzed using 
classical methods such as the Kasiski test and the 
Index of Coincidence. Once the key length is 
determined, frequency analysis makes decryption 
easier [1]. However, when the key is unknown, these 
methods yield limited results. 

Recently, effective methods for determining key 
length using Artificial Neural Networks (ANN) have 
been developed. In particular, Millichap & Yau 
demonstrated that ANN-based key length detection 
for the Vigenère cipher outperforms classical 
methods [2]. 

Research conducted by Greydanus showed that using 
an RNN (LSTM) architecture, it is possible to model 
the process of learning and decrypting Vigenère, 
Autokey, and Enigma ciphers within the network 
itself. For the Vigenère cipher, the model produced 
highly effective results when it had learned the 
internal properties of the cipher [3]. 

Focardi & Luccio demonstrated that using neural 
networks, it is possible to identify the key in classical 
ciphers—including Vigenère and other polyalphabetic 
ciphers—through a ciphertext-only attack approach 
[4]. 

Moreover, in block ciphers, neural networks have 
been successfully applied to perform attacks such as 
Plaintext Recovery, Key Recovery, and Ciphertext 
Classification. Algorithms such as DES, AES, and SPECK 
showed notable vulnerabilities under such 
approaches [5]. 

Additionally, studies have been conducted on 
identifying the type of cipher used in encrypted text 

using ANN. For example, ANN can determine which 
type of classical cipher (polyalphabetic, 
transpositional, etc.) was applied based solely on the 
text [6]. 

Finally, deep learning-based neural cryptanalysis 
methods have also been developed for block ciphers, 
where RNN and CNN architectures are used to 
evaluate the weaknesses of classical encryption 
systems [7]. 

METHODOLOGY 

Main directions of AI application in cryptanalysis 

1. Analysis of block encryption algorithms: 

– Automating differential and linear analysis: neural 
networks can more quickly find gaps (differential 
trails, linear trails); 

– Studying S-boxes: AI is used to evaluate the 
nonlinearity, differential uniformity, and security 
parameters of S-boxes. 

2. Detection and analysis of encrypted traffic: 

– AI-based traffic classification: using machine 
learning (ML), it is possible to distinguish between 
regular HTTPS, VPN, TOR, or covert protocols; 

– Security monitoring: AI detects abnormal 
(anomalous) behavior in networks. 

3. Breaking cryptographic algorithms (Cryptanalysis): 

– Side-channel attacks: by analyzing voltage, 
electromagnetic waves, or timing measurements 
collected from sensors using AI, it is possible to 
recover the key; 

– Key recovery through deep learning: for instance, 
AES or RSA keys can be identified using neural 
networks through side-channel attacks. 

4. Post-quantum cryptography and AI: 

– Identifying vulnerabilities in quantum-resistant 
algorithms using AI; 

– Detecting structures in lattice-based algorithms 
using AI. 

5. Automated design of cryptosystems: 

– Creating new, more secure encryption functions 
using evolutionary algorithms and reinforcement 
learning; 

– Automatically generating S-boxes or hash functions. 

AI methods used: 

– Artificial Neural Networks (CNN, RNN, Transformer) 
— for key recovery and traffic analysis; 

– Reinforcement Learning (RL) — for discovering new 
cryptographic algorithms; 

– K-means, PCA, SVM — for separating side-channel 
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data; 

– Genetic Algorithms — for creating optimal S-boxes. 

Practical examples: 

– AES side-channel attack: successful recovery of 128-
bit keys using CNNs with fewer than one million 
observations; 

– SHA-3 analysis: certain weak structures identified 
using machine learning; 

– VPN traffic classification: AI distinguished regular 
HTTPS and VPN flows with over 95% accuracy. 

The Vigenère cipher is a polyalphabetic substitution 
cipher, traditionally broken using: 

– Frequency analysis; 

– Kasiski test; 

– Friedman test. 

However, neural network–based approaches aim to: 

– Determine the key length; 

– Recover the key from ciphertext; 

– Recover plaintext from ciphertext (decryption). 

Types of neural networks used: 

– Recurrent Neural Networks (RNN, LSTM, GRU): 
effective for learning textual sequences; 

– Convolutional Neural Networks (CNN): used for 
extracting features from character sequences; 

– Transformers: modern architecture capable of 
capturing long-range dependencies in text. 

Applying neural networks to the Vigenère algorithm 

Supervised learning: 

– The model is given (ciphertext → plaintext) pairs. 

– RNN, LSTM, GRU, or Transformer architectures are 
used. 

– Goal: the model learns to reconstruct plaintext from 
ciphertext. 

Key recovery: 

– The model is trained on (ciphertext, plaintext) pairs 
to predict the key. 

– This produces results similar to classical Kasiski 
tests, but in an automated way. 

Key-length detection: 

– The neural network predicts only the key length. 

– Then, classical methods can be used more easily to 
find the key. 

Learning process 

Data preparation: 

– Numerous ciphertext–plaintext pairs with varying 
key lengths are generated; 

– These pairs are used for training the neural 
network. 

 Model training: 

– For example, an RNN model is given ciphertext and 
learns to reconstruct plaintext or key; 

– Training usually requires large datasets (millions of 
examples). 

 Results: 

– The network “learns” the decryption algorithm to 
some extent on its own; 

– Some studies show that the model also learns to 
identify the Vigenère key length. 

In studies [8, 9, 10], neural networks have been 
applied to classical ciphers such as Vigenère, Autokey, 
and Enigma, demonstrating that decryption 
algorithms can be learned by the model itself. 

Advantages and disadvantages 

Advantages: 

– Can operate even when the key length is unknown; 

– More flexible than traditional statistical tests. 

Disadvantages: 

– Requires large amounts of data and computational 
resources; 

– Since the model is a “black box,” it provides an 
approximate rather than explicit algorithmic solution. 

Below is information about the main parameters of 
the software tool developed based on the neural 
model: 

Alphabet and auxiliary functions 

ALPHABET = string.ascii_uppercase   # "A" ... "Z" 

VOCAB_SIZE = len(ALPHABET) # 26 

char2idx = {ch: i for i, ch in enumerate (ALPHABET)} # 
harf -> number 

idx2char = {i: ch for i, ch in enumerate (ALPHABET)} # 
son -> letter 

Each letter is assigned an index (A=0, B=1, ..., Z=25). 

These indices are required to serve as the input and 
output of the neural network. 

2. Encryption and decryption 

def vigenere_encrypt(plaintext, key): 

    ... 

def vigenere_decrypt(ciphertext, key): 

    ... 

 Encryption (encrypt): 

 C[i] = (P[i] + K[i mod len(key)]) mod 26 

 decryption (decrypt): 
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 P[i] = (C[i] - K[i mod len(key)]) mod 26 

This is the mathematical representation of the 
classical Vigenère algorithm. 

3. Dataset preparation 

def generate_dataset(num_samples=2000, 
text_len=20, key="KEY"): 

    ... 

 Plaintext: each time, it is composed of 20 
random letters. 

 Ciphertext: The plaintext is encrypted using 
the Vigenère cipher with the key “SECRET”. 

 The pairs of X (ciphertext indices) and Y 
(plaintext indices) are stored together. 

A dataset of “(ciphertext → plaintext)” mappings is 
created for the model. 

4. Model (RNN) 

class VigenereRNN(nn.Module): 

    def __init__(self, vocab_size, hidden_dim=64): 

        super().__init_() 

        self.embed = nn.Embedding(vocab_size, 
hidden_dim) 

        self.rnn = nn.GRU(hidden_dim, hidden_dim, 
batch_first=True) 

        self.fc = nn.Linear(hidden_dim, vocab_size) 

 Embedding: It converts the letter index into 
a hidden-dimensional vector. 

 GRU (RNN): It learns the relationships 
between consecutive characters. 

 Linear: It produces 26 possible outputs 
(letters) from the final hidden vector. 

Thus, the model learns the mapping from ciphertext 
characters to plaintext characters. 

5. Trening 

for epoch in range(10): 

    ... 

 For each pair (batch = 1), forward → loss → 
backward → update is performed. 

 CrossEntropyLoss measures the error 
based on the probability of predicting the correct 
letter. 

 The optimizer updates the parameters. 

 The process is repeated n times (epoch = 
10) over all samples. 

A decrease in loss during training indicates that the 
model is learning. 

6. Test 

X, Y = random.choice(test_data) 

with torch.no_grad(): 

    outputs = model(X.unsqueeze(0)) 

    preds = outputs.argmax(dim=-1).squeeze(0) 

 Random test uchun bir juftlik tanlanadi. 

 Modeldan chiqish (outputs) ehtimollik 
shaklida bo‘ladi. 

 argmax orqali eng katta ehtimollikdagi harf 
tanlanadi → predicted plaintext. 

Result: 

Ciphertext: VAAYOEMNDCBXEXVNDPEP 

True Plain: QIVGJMHVYKWFZFQVYXZX 

Predicted: ... 

7. This program works with only one key (“SECRET”). 
The model memorizes the Vigenère cipher as a 
“pattern”, not as an algorithmic rule. Therefore, if the 
key changes, the model will no longer work correctly. 
To achieve better results: Increase the “training data” 
(10k–50k samples), Increase the “hidden dimension” 
(128–256), Increase the number of “epochs” (50+). 

RESULTS 

Result: 

 Epoch 1, Loss=1.6431 

 Epoch 2, Loss=1.5478 

 Epoch 3, Loss=1.5405 

 Epoch 4, Loss=1.5138 

 Epoch 5, Loss=1.4859 

 Epoch 6, Loss=1.4532 

 Epoch 7, Loss=1.4165 

 Epoch 8, Loss=1.3909 

 Epoch 9, Loss=1.3673 

 Epoch 10, Loss=1.3524 

 Ciphertext : YGQNWCIHHFBIKHRMLULM 

 True Plain : GCOWSJQDFOXPSDPVHBTI 

 Predicted  : GCOWEYEOOBZEGOYIHBHI 

The model worked, and although the predicted 
plaintext was quite close to the original, there are still 
some errors. 

The reasons for this are: 

1. Too few training epochs (10 epochs) — the GRU has 
not yet fully learned the pattern. 

2. Batch size = 1 — the model learns slowly and 
imprecisely. 

3. Small dataset (3,000 samples) — at least 20,000–
50,000 samples are needed for better generalization. 
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4. Hidden layer size (64) is too small — it cannot fully 
capture the complexity of the encryption pattern. 

Improvement recommendations: 

Increase the number of epochs (e.g., 30–50 epochs): 

for epoch in range(50): 

    ... 

Use batch learning (train with mini-batches). 

For example, select samples from `train_data` with 
`batch_size = 32`. 

Increase the model size: 

model = VigenereRNN(VOCAB_SIZE, 
hidden_dim=128) 

Expand the dataset: 

train_data = generate_dataset(20000, key=KEY) 

test_data = generate_dataset(1000, key=KEY) 

Result: 

Epoch 1, Loss=1.5684 

Epoch 2, Loss=1.3705 

Epoch 3, Loss=1.3411 

Epoch 4, Loss=1.3271 

Epoch 5, Loss=1.3159 

Epoch 6, Loss=1.3094 

Epoch 7, Loss=1.2950 

Epoch 8, Loss=1.2770 

Epoch 9, Loss=1.2637 

Epoch 10, Loss=1.2551 

Epoch 11, Loss=1.2357 

Epoch 12, Loss=1.2176 

Epoch 13, Loss=1.2114 

Epoch 14, Loss=1.2052 

Epoch 15, Loss=1.2071 

Epoch 16, Loss=1.1794 

Epoch 17, Loss=1.1611 

Epoch 18, Loss=1.1426 

Epoch 19, Loss=1.1280 

Epoch 20, Loss=1.1172 

Epoch 21, Loss=1.1099 

Epoch 22, Loss=1.1079 

Epoch 23, Loss=1.1044 

Epoch 24, Loss=1.1078 

Epoch 25, Loss=1.1002 

Epoch 26, Loss=1.1026 

Epoch 27, Loss=1.1027 

Epoch 28, Loss=1.0912 

Epoch 29, Loss=1.0918 

Epoch 30, Loss=1.0882 

Epoch 31, Loss=1.0854 

Epoch 32, Loss=1.0830 

Epoch 33, Loss=1.0854 

Epoch 34, Loss=1.0794 

Epoch 35, Loss=1.0828 

Epoch 36, Loss=1.0848 

Epoch 37, Loss=1.0813 

Epoch 38, Loss=1.0806 

Epoch 39, Loss=1.0827 

Epoch 40, Loss=1.0764 

Epoch 41, Loss=1.0818 

Epoch 42, Loss=1.0751 

Epoch 43, Loss=1.0751 

Epoch 44, Loss=1.0761 

Epoch 45, Loss=1.0740 

Epoch 46, Loss=1.0710 

Epoch 47, Loss=1.0702 

Epoch 48, Loss=1.0720 

Epoch 49, Loss=1.0738 

Epoch 50, Loss=1.0705 

Ciphertext : UCMLOLOVZYDBWFIJXUON 

True Plain : CYKUKSWRXHZIEBGSTBWJ 

Predicted  : CYKUKSWRVUMXEBEFTQKL 

The model is working, but further optimization is 
required. The next step involves using a GPU device. 
In PyTorch, the idea of using a GPU (CUDA) is to 
transfer the model and data to the GPU device. 

device = torch.device("cuda" if 
torch.cuda.is_available() else "cpu") 

Result: 

Epoch 1, Loss=1.5197 

Epoch 2, Loss=1.2642 

Epoch 3, Loss=0.3143 

Epoch 4, Loss=0.0123 

Epoch 5, Loss=0.0043 

Epoch 6, Loss=0.0023 

Epoch 7, Loss=0.0014 

Epoch 8, Loss=0.0009 

Epoch 9, Loss=0.0006 

Epoch 10, Loss=0.0004 
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Epoch 11, Loss=0.0003 

Epoch 12, Loss=0.0002 

Epoch 13, Loss=0.0001 

Epoch 14, Loss=0.0001 

Epoch 15, Loss=0.0001 

Ciphertext : KUQFBDXJBXUKXVYEYWJA 

True Plain : SQOOXKFFZGQRFRWNUDRW 

Predicted  : SQOOXKFFZGQRFRWNUDRW 

Epoch 1, Loss=1.5223 

Epoch 2, Loss=1.2673 

Epoch 3, Loss=0.1157 

Epoch 4, Loss=0.0049 

Epoch 5, Loss=0.0022 

Epoch 6, Loss=0.0012 

Epoch 7, Loss=0.0008 

Epoch 8, Loss=0.0005 

Epoch 9, Loss=0.0003 

Epoch 10, Loss=0.0002 

Epoch 11, Loss=0.0002 

Epoch 12, Loss=0.0001 

Epoch 13, Loss=0.0001 

Epoch 14, Loss=0.0001 

Epoch 15, Loss=0.0000 

The model has been saved to the file 
**'vigenere_model.pth'**. 

Ciphertext : ANOTMFAIMSPBHQVNRETP 

True Plain : IJMCIMIEKBLIPMTWNLBL 

Predicted  : IJMCIMIEKBLIPMTWNLBL 

DISCUSSION OF RESULTS 

The comparative analysis of the obtained results 
across three stages is presented in Table 1. 

Stage Conditions 
Loss 

Dynamics 
Conclusion 

Stage 1 
10 epochs, batch=1, 
dataset=3000, hidden=64 

Loss ~1.64 → 
1.35 

The model started to 
learn, but many errors 
still remain. 

Stage 2 
50 epochs, batch=32, 
dataset=20000, hidden=128 

Loss ~1.56 → 
1.07 

The results improved, 
though some characters 
are still predicted 
incorrectly. 

Stage 3 
(without GPU, 
on CPU) 

15 epochs, large dataset, strong 
optimization 

Loss ~1.52 → 
0.0001 

The model fully 
decrypted the text 
correctly. 

Stage 4 (on 
CPU, 15 
epochs, with 
saving) 

Model saved to file 
(vigenere_model.pth) 

Loss ~1.52 → 
0.0000 

The model works stably 
with no errors. 

From the table, it can be seen that: 

– In Stage 1, the model was trained too little, so the 
results were inaccurate. 

– In Stage 2, after expanding the dataset and 
increasing the number of epochs, the model started 
to perform better. 

– In Stages 3 and 4, the model produced almost 
perfect results. 

The results of the conducted experiments show that 
decrypting the Vigenère cipher using a neural 
network is indeed possible; however, the model’s 
success directly depends on the size of the training 
data, the network architecture, and the training 
conditions. With the initial small dataset (3,000 

samples) and short training period (10 epochs), the 
model managed to produce plaintext results that 
were close to the original for some characters, yet a 
high number of errors remained. This indicates that 
the GRU model had not yet fully learned the complex 
patterns in the cipher. 

By expanding the dataset to 20,000 samples, 
increasing the hidden layer size to 128, and training 
for 50 epochs, the results improved significantly. The 
loss function steadily decreased from 1.64 to 1.07, 
and the model began to learn the statistical patterns 
within the cipher more effectively. Nevertheless, the 
incorrect reconstruction of certain characters 
suggested that the model was still not fully optimized. 

The use of a GPU device considerably accelerated the 
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process, making the training far more efficient. The 
loss function dropped to extremely low values 
(around 0.0001), and the model successfully 
reconstructed the encrypted text without any errors. 
This outcome demonstrates that neural networks can 
quickly learn and nearly perfectly decrypt 
cryptosystems that have structural patterns similar to 
classical ciphers. 

In conclusion, the discussion indicates that applying 
neural networks to cryptanalysis tasks is a promising 
direction. The results achieved with the Vigenère 
cipher can serve as a practical foundation for studying 
more complex symmetric and asymmetric encryption 
algorithms in the future. 

CONCLUSION 

In this study, the problem of decrypting the Vigenère 
cipher using a neural network was examined. Initial 
experiments showed that a small training dataset 
(3,000 samples), a small hidden layer (size 64), and a 
low number of epochs (10) led to noticeable errors in 
the model’s output. Nevertheless, the model 
demonstrated a partial ability to reconstruct plaintext 
from ciphertext. At this stage, the gradual decrease in 
the loss function indicated that the model was 
learning and that its outputs were becoming closer to 
the original text. 

In the subsequent stages, the training dataset was 
expanded to 20,000 samples, the hidden layer size 
was increased, and training was conducted over 50 
epochs. As a result, the loss value steadily decreased, 
and the model began to produce much better 
decryption results. However, since some characters 
were still reconstructed incorrectly, further 
optimization of the model was deemed necessary. 

After utilizing a GPU, the model’s training speed 
significantly increased, and the loss function dropped 
to extremely small values (down to 0.0001). 
Consequently, the model successfully decrypted the 
ciphertext completely and without errors. 

Overall, the experiments demonstrated that neural 
networks can be effectively applied in cryptanalysis. 
Through the example of decrypting the Vigenère 
cipher, the neural network successfully learned the 
statistical patterns within the cipher and proved itself 
as a viable alternative approach to traditional 
cryptanalytic methods. In the future, this approach 
can potentially be extended to more complex 
encryption algorithms. 
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