

Agile, Resilient, and Digitally Intelligent Supply Chains: Foundations, Frameworks, and Future Research Directions

Suresh K. Malhotra

Department of Supply Chain and Operations Management, Indus Valley University

Received: 13 June 2025; **Accepted:** 24 June 2025; **Published:** 30 June 2025

Abstract:

Background: Supply chain management has evolved from a focus on cost minimization and functional optimization toward an integrated discipline that emphasizes value creation, agility, resilience, and responsiveness to demand and disruption (Christopher, 1998; Chopra & Meindl, 2007). Contemporary pressures—market volatility, rapid technological change, and heightened stakeholder expectations—require theoretical re-examination of established practices and practical frameworks that combine lean principles, agile responsiveness, and emergent digital capabilities such as the Internet of Things (IoT) and artificial intelligence (AI) (Christopher & Peck, 2004; Christopher, 2000; Chowdhury, 2025).

Objective: This paper synthesizes classical and contemporary literature to construct an integrative theoretical and operational framework that links supply chain strategy selection, structural design, operational practices (including kanban and lean-agile migration), and digital enablement (IoT, AI). It aims to identify critical research gaps, propose testable propositions, and map a future research agenda emphasizing empirical validation of integrated models across industry contexts (Fisher, 1997; Borade & Bansod, 2007).

Methods: Building on a rigorous literature synthesis and conceptual analysis of seminal and recent works, this study applies a multi-level theoretical integration method: (1) strategic typology alignment (product characteristics to supply chain choice) (Fisher, 1997); (2) process & capability mapping (lean, agile, resilient constructs) (Christopher, 2000; Childerhouse et al., 2000); (3) digital capability overlay (IoT, AI in inventory and tracking) (Chowdhury, 2025); and (4) governance and operational controls (kanban, replenishment models) (Anderson, 2010). The methodology emphasizes cross-referencing claims to the provided literature and deriving propositions that can guide empirical studies.

Results: The integrated framework highlights three core dimensions—strategy fit, structural flexibility, and digital orchestration—each with specific capabilities and practices that interact to determine performance under volatility. Key findings include: (a) product-driven strategy choice remains foundational to supply chain design (Fisher, 1997); (b) migration paths from lean to agile require staged capability building and governance changes (Christopher & Towill, 2000; Childerhouse et al., 2000); (c) resilience is not antithetical to lean if reframed as capability portfolios combining redundancy, flexibility, and visibility (Christopher & Peck, 2004); and (d) IoT and AI materially amplify visibility and decision speed but require organizational changes and data governance to translate into improved service and cost outcomes (Chowdhury, 2025).

Conclusions: The paper concludes with a detailed research agenda that calls for multi-method empirical studies—longitudinal case studies, field experiments, and large-sample surveys—to validate the proposed framework across sectors. It calls for managerial attention to capability sequencing, measurement of digital maturity, and investment in human-machine processes to capture the full value of technological investments (Borade & Bansod, 2007; Chopra & Meindl, 2007).

Keywords: Supply chain strategy, agility, resilience, IoT, AI, lean-agile migration

INTRODUCTION:

The contemporary business environment is characterized by rapid technological change, complex networks of suppliers and customers, and persistent uncertainty driven by economic, social, and environmental shocks. Over the past three decades, supply chain management has transformed from a logistics-centric discipline to a strategic capability that can create competitive advantage, manage risk, and enable responsiveness to customer needs (Christopher, 1998; Chopra & Meindl, 2007). The seminal question posed by Fisher (1997)—“What is the right supply chain for your product?”—remains foundational: product characteristics and demand patterns must inform supply chain strategy selection and structural design. Yet, the answers have become more nuanced. The dichotomy between efficient/lean and responsive/agile supply chains has been supplemented with resilience and digital orchestration as key pillars of modern design (Christopher, 2005; Christopher & Peck, 2004).

This paper addresses the need for an integrative, theoretically grounded, and practically relevant framework for designing and operating supply chains in volatile markets. It brings together three streams of scholarship and practice: (1) strategy-fit typologies linking product characteristics to supply chain configuration (Fisher, 1997; Chopra & Meindl, 2007); (2) operational capability development and migration from lean to agile approaches (Christopher & Towill, 2000; Childerhouse et al., 2000; Anderson, 2010); and (3) digital transformation—particularly the role of IoT and AI in enabling visibility, predictive analytics, and automation (Chowdhury, 2025). These streams are synthesized to propose an integrated model that explicates how organizations can align strategic choices, build operational capabilities, and deploy digital technologies to achieve improved performance on cost, service, and resilience dimensions.

The motivation for this study rests on several observations evident in the literature. First, strategy fit remains essential but under-specified in multi-dimensional contexts where products, markets, and technologies vary concurrently (Fisher, 1997; Chopra & Meindl, 2007). Second, migration strategies from lean to agile have been discussed conceptually but lack detailed prescriptions for capability sequencing and governance changes necessary for firms to successfully reorient their supply chains (Christopher & Towill, 2000; Childerhouse et al., 2000). Third, while digital technologies are widely promoted for supply chain improvement, empirical evidence on how IoT and AI combine with classical practices to produce

measurable outcomes is emergent and fragmented (Chowdhury, 2025). Finally, there is an acknowledged need to reconcile lean efficiency with resilience imperatives in a way that preserves cost advantages while enabling robustness to shocks (Christopher & Peck, 2004; Christopher, 2005).

This study aims to fill these gaps by: (a) synthesizing theoretical insights across the referenced literature to construct a cohesive framework; (b) articulating detailed operational mechanisms through which lean, agile, and digital practices interact; and (c) proposing a research agenda and testable propositions to drive future empirical work. The remainder of the paper unfolds as follows: a detailed methodological exposition of the conceptual synthesis approach; presentation of the integrated framework and descriptive findings; deep discussion interpreting the framework, identifying limitations, and highlighting managerial implications; and a conclusion with an actionable research agenda.

METHODOLOGY

This research employs a structured conceptual synthesis methodology rooted in literature integration and theoretical elaboration. Conceptual synthesis is particularly appropriate when the goal is to reconcile diverse theoretical perspectives and generate actionable frameworks that guide both research and practice (Chopra & Meindl, 2007; Christopher, 2005). The method proceeds through four distinct but interrelated analytical steps: strategic typology mapping, capability and process mapping, digital overlay analysis, and proposition development. Each step is conducted with careful cross-referencing to the provided literature and an emphasis on deriving implications that are both theoretically grounded and operationally actionable.

Strategic Typology Mapping. The first analytical step revisits Fisher's (1997) typology linking product demand characteristics—functional versus innovative—to supply chain design choices. Building on Fisher, Chopra and Meindl (2007) elaborated decision frameworks for aligning supply chain strategy with market requirements, while Borade and Bansod (2007) provided domain-specific overviews of supply chain concepts that contextualize strategic choices. The mapping synthesizes these contributions to create a refined typology that incorporates product life-cycle, demand predictability, and market volatility as primary axes for strategy choice. Each cell in the typology is described in terms of recommended structural attributes (e.g., centralization vs.

decentralization of inventory, procurement strategies, lead-time priorities) and is supported by citation to the foundational texts.

Capability and Process Mapping. The second step examines operational capabilities required to implement chosen strategies. Christopher and Towill (2000) and Childerhouse et al. (2000) presented migration pathways from lean, cost-focused operations to agile, responsive systems; Anderson (2010) provided practical mechanisms such as Kanban for enabling evolutionary change. This step deconstructs capability into discrete elements—information visibility, replenishment control, production flexibility, supplier integration, and logistics responsiveness—and links them to operational practices. Each capability is defined, its mechanisms explicated, and its theoretical justification cited to the appropriate literature.

Digital Overlay Analysis. The third step overlays digital capabilities onto the strategic and capability maps. Chowdhury (2025) synthesizes the role of IoT and AI in warehouse tracking and inventory management, offering contemporary evidence that digital tools change the cost-benefit calculus of decisions regarding redundancy and decentralization. The digital overlay examines how IoT-enabled sensing, AI-driven forecasting, and automated execution systems alter lead-times, safety stock rules, and reorder policies. This analysis draws explicit causal chains from sensing to decision-making to execution, and it integrates the propositions with classical supply chain logic from Chopra and Meindl (2007).

Proposition Development and Research Agenda Formulation. The final step synthesizes insights into a set of testable propositions and an empirical research agenda. Propositions posit relationships among strategy fit, capability bundles, digital maturity, and performance outcomes (service level, cost, resilience). The agenda recommends methodological approaches—longitudinal case studies to observe migration processes, field experiments to test digital interventions, and large-sample surveys to examine cross-sectional relationships—explicitly justified with references to the literature gaps identified.

Throughout the methodology, the study adheres to the constraint of strictly using the provided references for theoretical grounding and citation. Each claim and proposition is anchored to one or more sources from the reference list to ensure that the argumentation remains traceable to the supplied literature. The methodology section deliberately avoids quantitative modeling or empirical data analysis because the paper's objective is theoretical

synthesis and agenda setting; however, it provides detailed guidance on how subsequent empirical work should operationalize constructs and measure outcomes, drawing on canonical measures and practices from the cited works (Chopra & Meindl, 2007; Christopher & Peck, 2004).

RESULTS

This section articulates the outcomes of the conceptual synthesis—the integrated framework, descriptive analyses of capability interactions, and a series of detailed propositions that operationalize the framework for future empirical testing. The results are presented in narrative form and emphasize logical coherence, theoretical novelty, and practical relevance.

Integrated Framework: Strategy Fit — Structural Design — Digital Orchestration. The synthesis yields a three-dimensional integrative framework that positions supply chain strategy fit at the core, structural design as the enabling architecture, and digital orchestration as the amplifier of capability. The dimensions and their interrelations are described below with grounded citations.

1. Strategy Fit (Product and Market Characteristics). Building on Fisher (1997), the framework retains product demand characteristics as the primary determinant of strategic choice. Functional products—characterized by predictable demand and long life-cycles—are best served by efficient, lean supply chains that prioritize cost reduction and high asset utilization (Fisher, 1997; Chopra & Meindl, 2007). Innovative products—characterized by unpredictable demand and short life-cycles—require responsive structures that prioritize speed, flexibility, and market feedback (Fisher, 1997; Christopher, 2000). This strategic fit is non-negotiable; misalignment leads to suboptimal performance and increased risk exposure (Fisher, 1997).

2. Structural Design (Network Architecture & Governance). Structural design comprises network topology (centralized versus decentralized warehousing), supplier relationships (single-source versus multi-sourcing), and inventory policies (push versus pull from demand signals). Chopra and Meindl (2007) emphasize that these structural attributes translate strategy into practice. For example, functional-product supply chains often centralize inventory to exploit economies of scale, whereas innovative-product supply chains decentralize to reduce lead times and increase responsiveness (Chopra & Meindl, 2007; Christopher, 2005).

3. Digital Orchestration (Visibility, Analytics, Execution). The third dimension, informed by Chowdhury (2025), posits that IoT and AI capabilities transform the efficacy of structural choices by changing the informational and executional constraints that originally motivated those choices. IoT sensors and real-time tracking reduce uncertainty about actual inventory positions and movement times, while AI-driven forecasting improves the accuracy and speed of demand predictions, enabling firms to operate with lower safety stocks without sacrificing service (Chowdhury, 2025). Digital orchestration thus acts as an amplifier and sometimes as an enabler of structural choices that would otherwise be infeasible or cost-inefficient (Chowdhury, 2025; Chopra & Meindl, 2007).

Capability Interactions and Migration Paths. The framework specifies how capabilities interact and how organizations can transition from lean to agile configurations.

Information Visibility as a Foundation. Across migration pathways, information visibility emerges as the foundational capability: accurate, timely, and shared data about orders, inventories, and shipments enable downstream practices such as Kanban pull systems, postponement, and rapid replenishment (Anderson, 2010; Christopher & Towill, 2000). Information visibility reduces the bullwhip effect and facilitates coordinated decision-making across the network (Childerhouse et al., 2000).

Replenishment Control and Pull Mechanisms. Kanban and other pull mechanisms provide evolutionary change pathways for firms seeking to introduce agility without wholesale system overhaul (Anderson, 2010). Pull systems, when supported by robust visibility, reduce lead times and inventory variability. However, their effectiveness depends on supplier reliabilities and process stability—conditions more common in functional-product contexts but achievable in innovative-product contexts with appropriate capability building (Anderson, 2010; Childerhouse et al., 2000).

Flexibility through Supplier Integration and Postponement. Operational flexibility is achieved through supplier integration, modular product architectures, and postponement strategies that delay final product configuration until demand signals clarify (Christopher, 2000; Chopra & Meindl, 2007). These mechanisms reduce the risk of obsolescence and enable responsive fulfillment patterns in volatile markets.

Digital Acceleration: IoT and AI as Game Changers. IoT and AI accelerate the migration by reducing

information latency and enabling predictive control. For example, IoT-enabled warehouses can provide near-real-time stock positions, and AI algorithms can forecast short-term demand surges, enabling more nuanced safety-stock calculations and dynamic replenishment that preserve service while reducing inventory costs (Chowdhury, 2025). However, the literature cautions that technology alone is insufficient—organizational processes, governance, and human capabilities must evolve to harness digital potential (Chowdhury, 2025; Borade & Bansod, 2007).

Propositions for Empirical Testing. Based on the integrated framework, the study formulates a set of explicit, testable propositions for future research. Each proposition references the theoretical lineage from the cited literature.

Proposition 1: Strategic alignment between product characteristics and supply chain design positively moderates the relationship between operational capabilities (visibility, flexibility) and supply chain performance (service level and cost efficiency). (Fisher, 1997; Chopra & Meindl, 2007).

Proposition 2: Information visibility mediates the relationship between digital investments (IoT, AI) and operational performance; firms with higher visibility derive greater benefits from AI-driven decision support. (Chowdhury, 2025; Christopher & Towill, 2000).

Proposition 3: The effectiveness of pull-based operational controls (e.g., Kanban) in reducing inventory and lead-time variability is contingent on supplier reliability and process stability; this contingency is weaker in environments where IoT-enabled real-time tracking is deployed. (Anderson, 2010; Childerhouse et al., 2000; Chowdhury, 2025).

Proposition 4: Resilience—operationalized as the ability to maintain service levels under disruption—is enhanced by combining lean efficiency mechanisms with targeted redundancy enabled through digital visibility rather than by adopting blanket inventory buffers. (Christopher & Peck, 2004; Christopher, 2005).

Proposition 5: The transition from lean to agile capabilities follows a staged path: establish visibility; implement pull controls; integrate supplier networks; deploy postponement and modularity; layer digital predictive capabilities. Organizations that follow this sequence will experience lower transition costs and higher probabilities of sustained performance improvements. (Christopher & Towill, 2000; Anderson, 2010; Christopher, 2000).

These propositions provide specific empirical leverage points for future studies and help translate the conceptual framework into operationalizable research questions.

Descriptive Findings Regarding Organizational and Managerial Implications. The synthesis yields several nuanced descriptive insights that inform managerial practice:

1. Capability sequencing matters. Rapid, uncoordinated investments in technology without prior investments in governance and process standardization often fail to deliver expected benefits (Borade & Bansod, 2007; Chowdhury, 2025).

2. Digital investments shift trade-offs but do not eliminate them. IoT and AI reduce information asymmetries but require investments in data quality, interoperability, and human skills to produce sustained performance improvements (Chowdhury, 2025; Chopra & Meindl, 2007).

3. Resilience must be reframed as a capability portfolio. Instead of relying solely on inventory buffers, firms should design complementary capabilities—flexible sourcing, rapid transport modes, and real-time visibility—so that resilience is achieved at lower overall cost (Christopher & Peck, 2004; Christopher, 2005).

4. Industry context moderates optimal design. Sectors with short product life cycles (e.g., fashion, electronics) will benefit more from agility and postponement, whereas sectors with stable demand (e.g., staple consumer goods) will continue to prioritize lean efficiency (Fisher, 1997; Chopra & Meindl, 2007).

Collectively, these results offer a rich, actionable template for managers and a concrete set of propositions for researchers to validate.

Discussion

The integrative framework and propositions derived from the synthesis contribute to both theoretical development and practical guidance. This discussion interprets the results, explores theoretical implications, discusses limitations inherent in a conceptual paper, and outlines a detailed future research agenda with methodological recommendations.

Theoretical Implications. Several theoretical contributions emerge from the analysis.

Reconceptualizing Strategy Fit in Digital Contexts. Fisher's (1997) core insight—that product characteristics should drive supply chain choice—

remains valid, but its application must account for digital capabilities that shift the shape of trade-offs. Digital visibility and predictive analytics reduce uncertainty and can allow firms producing semi-innovative products to adopt hybrid designs that capture efficiency benefits while remaining responsive (Chowdhury, 2025; Chopra & Meindl, 2007). This suggests a theoretical refinement: strategy fit should be viewed as dynamic and contingent on digital maturity. The degree to which digital orchestration can contract lead-times and improve forecast accuracy should be explicitly modeled in future theoretical work (Chowdhury, 2025).

Capability Bundles and Complementarities. The framework highlights complementarity effects among capabilities: visibility enhances the effectiveness of pull systems; supplier integration magnifies the value of postponement; AI forecasting elevates the return on investments in modular product design. These complementarity effects align with resource-based perspectives that emphasize capability interactions rather than isolated practices (Christopher & Towill, 2000). Theoretical models that capture these non-linear interactions—possibly using configurational approaches (e.g., fuzzy set qualitative comparative analysis) or systems dynamics—would provide richer predictive power (Childerhouse et al., 2000).

Lean-Resilience Reconciliation. The literature has sometimes framed lean and resilience as opposing objectives; however, the synthesis indicates they can be reconciled when resilience is reframed as a portfolio of capabilities rather than as redundant inventory alone (Christopher & Peck, 2004). This shift resonates with contingency theories that recommend fit between environmental demands and organizational responses. Theoretical development should explore boundary conditions and costs associated with different resilience portfolios (Christopher, 2005).

Practical and Managerial Implications. The study yields several actionable implications for practitioners.

Prioritize Visibility and Governance Before Major Technology Investments. Managers are advised to invest first in information standards, cross-functional processes, and governance mechanisms that ensure data quality and sharing. Without these, IoT and AI investments yield limited returns (Borade & Bansod, 2007; Chowdhury, 2025).

Sequence Capability Development. Firms should adopt a staged migration path from lean to agile:

begin with visibility and predictable internal processes; introduce pull mechanisms where appropriate; integrate suppliers and adopt postponement to increase flexibility; and finally layer predictive analytics to optimize decision-making and safety stock dynamically (Christopher & Towill, 2000; Anderson, 2010).

Measure Digital Maturity and Link It to Strategy. Managers should develop metrics for digital maturity—such as sensor coverage ratios, latency of inventory updates, and forecast refresh rates—and use these metrics to assess whether digital capabilities can support more decentralized inventory strategies or just-in-time models (Chowdhury, 2025; Chopra & Meindl, 2007).

Limitations. As with any conceptual synthesis, this paper is subject to several limitations that should guide interpretation and future empirical work.

Reliance on Provided References. The analysis strictly adheres to the references supplied in the user input. While these works are foundational and contemporary, the omission of broader literature—particularly empirical studies published after the most recent citation in the list—constrains the generalizability of the conclusions. For example, industry-specific empirical studies or cross-country comparative analyses that could nuance the framework are not directly incorporated here (Borade & Bansod, 2007; Chowdhury, 2025).

Absence of Primary Empirical Validation. The propositions and framework are theoretically derived and require empirical testing. The paper does not present original data or statistical validation; it instead offers a detailed roadmap for empirical research. This limits the immediate prescriptive certainty of managerial recommendations, which should be treated as research-informed guidance rather than proven prescriptions (Chopra & Meindl, 2007).

Contextual Generality versus Specificity. While the framework aims to be generalizable across industries, the precise configurations of capabilities will vary by sector; detailed sectoral prescriptions require empirical study in context, particularly for industries with regulatory constraints, perishability concerns, or unusual demand patterns (Fisher, 1997; Christopher, 2005).

Future Research Agenda. To address these limitations and validate the propositions, the paper proposes a multi-method research agenda with concrete study designs.

Longitudinal Case Studies of Migration. Conduct

multi-year, in-depth case studies of firms undertaking the lean-to-agile transition, documenting capability sequencing, managerial decisions, and performance outcomes over time. These studies should employ mixed methods—interviews, archival data on inventory and service levels, and observational process mapping—and be anchored to the propositions outlined above (Christopher & Towill, 2000; Anderson, 2010).

Field Experiments on Digital Interventions. Design field experiments where IoT sensors and AI forecasting tools are deployed in a randomized subset of warehouses or product lines to measure causal impacts on lead-time variability, service level, and inventory holding costs. To ensure external validity, experiments should be conducted across industries with varying demand volatility (Chowdhury, 2025).

Large-Scale Surveys and Configurational Analysis. Administer structured surveys across multiple industries to measure constructs such as strategy fit, digital maturity, visibility, flexibility, and performance outcomes. Use configurational analytic techniques to identify successful capability bundles rather than relying solely on net-effect regression models (Chopra & Meindl, 2007; Christopher & Peck, 2004).

Simulation and Systems Dynamics Modeling. Employ simulation models to explore non-linear interactions among lead-times, information delays, and inventory policies under different digital maturity scenarios. Systems dynamics can model feedback loops—such as the bullwhip effect attenuation due to real-time visibility—and identify tipping points where digital investments change optimal structural choices (Childerhouse et al., 2000).

Cross-Sector Comparative Studies. Comparative research across sectors—e.g., fashion retail, consumer staples, electronics—can clarify the boundary conditions of the framework and reveal sector-specific trade-offs and best practices for capability sequencing (Fisher, 1997).

Policy and Governance Research. Investigate regulatory, data privacy, and standardization issues that affect the scalability of digital orchestration. Research should examine how industry consortia, standards bodies, and public policy can facilitate interoperable IoT ecosystems that amplify benefits across supply networks (Borade & Bansod, 2007).

By pursuing this multi-pronged research program, scholars can empirically validate the propositions and refine the framework for managerial application.

CONCLUSION

This paper synthesizes canonical and contemporary literature to propose an integrated theoretical and operational framework for modern supply chains. Anchored in strategy-fit logic (Fisher, 1997) and enriched by operational migration insights (Christopher & Towill, 2000; Childerhouse et al., 2000) and contemporary digital perspectives (Chowdhury, 2025), the framework identifies three core dimensions—strategy fit, structural design, and digital orchestration—and explicates their interactions in shaping performance under volatility.

Key contributions include the articulation of capability sequencing for lean-to-agile migration, the reframing of resilience as a portfolio of complementary capabilities enabled by digital visibility (Christopher & Peck, 2004), and a set of testable propositions that operationalize the framework for empirical investigation. Managerially, the findings advise prioritizing visibility and governance, sequencing capability development, and developing explicit metrics for digital maturity to guide investment and design choices (Anderson, 2010; Borade & Bansod, 2007).

The paper acknowledges limitations—particularly the absence of primary empirical tests—and sets forth a detailed research agenda that includes longitudinal case studies, field experiments, surveys, simulation modeling, and cross-sector comparisons. Together, these research paths will enable scholars and practitioners to refine and validate the framework, thereby equipping firms to design supply chains that are not only efficient but also agile, resilient, and digitally enabled.

In sum, the enduring insight from the literature is that there is no one-size-fits-all supply chain. Instead, firms must deliberately align their product characteristics, network structures, operational capabilities, and digital investments to create coherent systems that deliver superior performance in the face of uncertainty (Fisher, 1997; Chopra & Meindl, 2007; Christopher, 2005). The integrated framework presented here provides a theoretically grounded roadmap and a practical set of propositions to guide that alignment.

REFERENCES

1. Borade, A. B., & Bansod, S. V. (2007). Domain of supply chain management—A state of the art. *Journal of Technology Management and Innovation*, 2(4).
2. Chopra, S., & Meindl, P. (2007). Supply chain management: Strategy, planning, and operation. Upper Saddle River, New Jersey: Pearson.
3. Christopher, M. (1998). Logistics and supply chain management: Strategies for reducing cost and improving service. Prentice-Hall.
4. Christopher, M. (2000). The agile supply chain: Competing in volatile markets. *Industrial Marketing Management*, 29(1), 37–44.
5. Christopher, M. (2005). Logistics and supply chain management: Creating value-added networks. Harlow, England: Prentice Hall.
6. Christopher, M., & Peck, H. (2004). Building the resilient supply chain. *International Journal of Logistics Management*, 15(2), 1–13. <https://doi.org/10.1108/09574090410700275>
7. Christopher, M., & Towill, D. R. (2000). Supply chain migration from lean and functional to agile and customised. *International Journal of Supply Chain Management*, 5(4), 206–213.
8. Childerhouse, P., Disney, S., & Towill, D. R. (2000). Speeding up the progress curve towards effective supply chain management. *International Journal of Supply Chain Management*, 5(3), 176–186.
9. Anderson, C. (2010). Kanban: Successful evolutionary change for your technology business. Blue Hole Press.
10. Kumar, S., Jain, A., Rani, S., Ghai, D., Achampeta, S., & Raja, P. (2021, December). Enhanced SBIR based ReRanking and Relevance Feedback. In 2021 10th International Conference on System Modeling & Advancement in Research Trends (SMART) (pp. 7–12). IEEE.
11. Harshitha, G., Kumar, S., Rani, S., & Jain, A. (2021, November). Cotton disease detection based on deep learning techniques. In 4th Smart Cities Symposium (SCS 2021) (Vol. 2021, pp. 496–501). IET.
12. Jain, A., Dwivedi, R., Kumar, A., & Sharma, S. (2017). Scalable design and synthesis of 3D mesh network on chip. In Proceedings of the International Conference on Intelligent Communication, Control and Devices: ICICCD 2016 (pp. 661–666). Springer Singapore.
13. Kumar, A., & Jain, A. (2021). Image smog restoration using oblique gradient profile prior and energy minimization. *Frontiers of Computer Science*, 15(6), 156706.
14. Chowdhury, W. A. (2025). Agile, IoT, and AI: Revolutionizing warehouse tracking and inventory management in supply chain operations. *Journal of Procurement and Supply*

Chain Management, 4(1), 41–47.
<https://doi.org/10.58425/jpscm.v4i1.349>

15. Fisher, M. L. (1997). What is the right supply chain for your product? Harvard Business Review, 75(2), 105–116. <https://hbr.org/1997/03/what-is-the-right-supply-chain-for-your-product>

16. Borade, A. B and Bansod, S.V (2007). “Domain of Supply Chain management-A State of Art”. Journal of Technology Management and Innovation. 2:4.