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Abstract: Ensuring reliability and security in decentralized systems—especially those powered by smart contracts—
remains a formidable challenge. Traditional software testing methodologies often fall short when facing the unique 
combination of concurrency, statefulness, and adversarial exposure inherent to blockchain ecosystems. 
Meanwhile, the domain of software reliability and fuzzing has matured significantly, offering proven techniques for 
uncovering obscure bugs, buffer overflows, and protocol mis‑implementations. This article proposes a 
comprehensive, unified framework—SecureFuzz‑Smart—that synthesizes insights from traditional system 
reliability studies, microservices testing patterns, and domain‑specific smart contract fuzzing. We analyze 
prominent real-world failures in blockchain systems (e.g., the events described in Finley (2016) and Town (2025)) 
as motivating case studies, review foundational research on UNIX reliability (Miller et al., 1990), modern fuzzing 
techniques (Manès et al., 2021; Fioraldi et al., 2020; Sutton & Greene, 2005), interface‑aware kernel fuzzing (Corina 
et al., 2017), protocol‑state fuzzing (Ruiter & Poll, 2015), and contract‑specific fuzzers like ContractFuzzer (Jiang et 
al., 2018). We further draw parallels to microservice reliability research (Bird et al., 2011; Baresi & Garriga, 2020; 
André, 2018; Clemson, 2014) and contract testing practices (Kesarpu, 2025). Through a detailed methodological 
design and hypothetical deployment, we show how SecureFuzz‑Smart could systematically reduce vulnerability 
exposure in smart contract ecosystems, increase coverage across stateful behaviors, and complement existing 
smart contract auditing approaches. Limitations, potential counter‑arguments, and future research directions are 
discussed. Our analysis argues that adopting a multidisciplinary approach—combining fuzzing, service‑oriented 
architecture testing strategies, and contract‑specific tooling—offers a pragmatic pathway toward significantly 
improving smart contract robustness and trustworthiness. 
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Introduction:

The rise of blockchain technologies and decentralized 
applications (dApps) has ignited interest in smart 
contracts—self‑executing code enforced by the rules 
of cryptographic consensus rather than centralized 
authorities. The promise is transformative: 
automated escrow, decentralized finance, trustless 
exchanges, and programmable governance without 
intermediaries. However, the reality has been 
sobering. Security incidents continue to plague smart 
contract platforms, often resulting in catastrophic 
financial losses. For instance, the collapse of the 

original decentralized autonomous organization 
(DAO) in 2016 led to a loss reportedly exceeding $50 
million—a stark illustration that decentralization does 
not imply invulnerability (Finley, 2016). More 
recently, the so‑called “BatchOverflow” exploit 
allegedly generated trillions of counterfeit tokens on 
the Ethereum platform, prompting major exchanges 
to suspend ERC‑20 deposits (Town, 2025). These 
events expose a critical gap: conventional software 
testing and auditing practices are insufficient to guard 
against complex interactions, stateful manipulations, 
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and emergent behaviors in smart contract 
environments. 

Smart contract vulnerabilities arise for several 
reasons. First, contracts are often stateful, with 
business logic interacting through multiple function 
calls that mutate shared state across time. Second, 
contract execution occurs in an adversarial, 
permissionless environment, where attackers may 
attempt reentrancy, integer overflows, underflows, 
and unconventional invocation sequences. Third, 
tools and verification techniques common in 
traditional software engineering—such as static 
analysis, manual code review, and formal 
verification—can be time-consuming, expensive, or 
incomplete. Given these challenges, there is a strong 
need for systematic testing methodologies 
specifically tailored to the smart contract paradigm. 

Research on software reliability in traditional 
computing has long recognized that even mature 
UNIX utilities are susceptible to unexpected failure 
when stressed under unusual or malformed input 
(Miller et al., 1990). Over the past decade, fuzzing—
automated or semi‑automated generation of 
malformed or unexpected inputs—has emerged as a 
potent technique to expose buffer overflows, 
memory corruption, protocol violations, and 
undefined behaviors (Sutton & Greene, 2005). 
Advances such as coverage‑guided fuzzers, 
interface‑aware fuzzing (Corina et al., 2017), and 
protocol‑state fuzzing (Ruiter & Poll, 2015) have 
greatly improved the ability to find deep, 
state‑dependent bugs. More recently, specialized 
smart contract fuzzers like ContractFuzzer have 
demonstrated that fuzzing can effectively detect real 
vulnerabilities in Ethereum contracts (Jiang et al., 
2018). 

In parallel, software engineering research on 
microservices architecture emphasizes modularity, 
service isolation, interface contracts, and rigorous 
testing of inter‑service boundaries (Baresi & Garriga, 
2020; André, 2018; Clemson, 2014). Contract 
testing—testing the interfaces between services to 
ensure compatibility and adherence to shared 
expectations (Kesarpu, 2025)—is particularly relevant 
because smart contracts themselves act as services 
with well-defined interfaces, often composed into 
larger dApp ecosystems. In addition, empirical studies 
have shown that high ownership turnover and 
unclear boundaries between developers can 
adversely affect software quality (Bird et al., 2011), a 
lesson equally applicable to smart contract 
ecosystems where multiple developers may 
contribute to interdependent contracts. 

Despite these advances in fuzzing, microservices 
testing, and contract testing, the blockchain space has 
yet to strongly embrace a unified, comprehensive 
approach. Instead, developers often rely on manual 
audits or static analysis, which may miss subtle 
stateful or cross‑contract interactions. The result is 
continued vulnerability exposure. 

This article proposes a novel, interdisciplinary 
framework—SecureFuzz‑Smart—that brings 
together the strengths of fuzzing (including 
coverage‑guided, protocol‑state, and 
interface‑aware fuzzing), microservices testing 
discipline, and contract testing principles to 
systematically improve smart contract reliability. Our 
framework is informed by the failures of real-world 
smart contract deployments and grounded in 
rigorous academic research on software reliability 
and testing methodologies. We outline a conceptual 
methodology, discuss how SecureFuzz‑Smart could 
be integrated into development and deployment 
pipelines, present a hypothetical evaluation based on 
analogous systems, and analyze the benefits, 
limitations, and future research directions. 

The remainder of this article is structured as follows. 
The methodology section describes the architecture 
and process of SecureFuzz‑Smart in detail. The results 
section presents descriptive analyses of how the 
framework would address known vulnerabilities and 
hypothetical performance metrics. The discussion 
interprets the implications, trade‑offs, and 
limitations. Finally, we present conclusions and 
avenues for future work. 

METHODOLOGY 

The design of SecureFuzz‑Smart rests on the synthesis 
of three domains: (1) fuzzing and automated test 
generation, (2) microservices testing best practices 
including interface and contract testing, and (3) 
domain-specific constraints and semantics of smart 
contract execution on blockchain platforms. The 
methodology comprises three major components: (1) 
Fuzzing Engine Module, (2) Contract Interaction 
Harness Module, (3) Microservice‑style Contract 
Composition Module. Each module acts both 
independently and in synergy, allowing layered 
testing and continuous integration into smart 
contract development pipelines. 

Fuzzing Engine Module 

At the core of SecureFuzz‑Smart is a fuzzing engine 
capable of generating smart contract invocation 
sequences—streams of transactions—that mimic 
real-world contract usage, including edge cases, 
malformed inputs, and unusual state transitions. The 
engine draws inspiration from classic fuzzing tools 
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and methodologies, adapted for the Ethereum Virtual 
Machine (EVM) or comparable smart contract 
environments. 

● Coverage‑Guided Input Generation 

Following the principles of coverage‑guided fuzzing, 
the engine begins by randomly generating simple 
contract calls with pseudo‑random data types (e.g., 
integers, addresses, byte arrays) and measures code 
coverage (e.g., which functions are executed, which 
branches are taken). Over successive iterations, the 
engine mutates previous inputs, guided by feedback 
(e.g., reaching untested branches). This approach 
parallels techniques used in modern fuzzers such as 
those surveyed by Manès et al. (2021), and improved 
by incremental steps of fuzzing research (Fioraldi et 
al., 2020). The goal is to maximize code coverage and 
reveal hidden logic paths, including error handlers, 
fallback functions, and rarely executed branches. 

● Stateful and Protocol‑State Fuzzing 

Unlike simple command‑line utilities or stateless APIs, 
smart contracts maintain persistent state across 
transactions. To model this, the Fuzzing Engine 
maintains an internal model of the contract’s storage 
variables, event logs, and external dependencies 
(e.g., calls to other contracts). It tracks transitions in 
contract state and enables fuzz‑generated 
transaction sequences that explore stateful 
transitions—e.g., repeated calls, call‑order 
permutations, reentrancy scenarios, and boundary 
conditions such as integer overflows/underflows. This 
technique mirrors protocol‑state fuzzing approaches 
used in network protocol testing (Ruiter & Poll, 2015), 
adapted here to the contract‑level “protocol” 
between contract and caller. 

● Interface‑Aware Fuzzing 

For functions exposed by the contract interface (e.g., 
public or external methods), the engine generates 
inputs that respect type signatures but may violate 
semantic expectations—for example, passing zero 
addresses, extremely large numbers, or 
non‑initialized data structures. For external calls (e.g., 
transferring Ether, interacting with other contracts), 
the engine may attempt to simulate unexpected 
behaviors such as failing external calls, gas limits, 
event reordering, and out‑of‑gas exceptions. This 
design draws from interface‑aware fuzzing 
methodologies successfully applied to kernel drivers 
(Corina et al., 2017), where respecting the interface 
signature while violating assumptions about 
underlying behavior uncovers critical flaws. 

● Instrumented Execution Environment 

To monitor code execution and detect runtime errors, 

the fuzzing engine executes contract calls within an 
instrumented EVM or simulation environment. The 
environment logs exceptions (e.g., revert, assert, 
require violations), gas consumption anomalies, 
unintended fallback invocations, event logs, and state 
mutations. By analyzing these logs, the engine 
identifies suspicious behaviors—for example, state 
changes despite revert, unexpected fallback calls, or 
gas exhaustion leading to denial-of-service. 

Contract Interaction Harness Module 

To reflect the modular, service‑composed nature of 
many real-world dApps, the second component is a 
harness that assembles multiple contracts and 
triggers interactions among them—analogous to 
microservice interaction testing in conventional 
software architectures. 

● Service Composition Modeling 

Many dApps compose multiple smart contracts—for 
instance, a token contract, a governance contract, a 
vault contract, and a reward distribution contract. 
The harness defines an interaction graph that 
specifies which contracts may call which, under what 
conditions, and in what sequence. This approach 
parallels microservices architecture testing, where 
service boundaries and interactions are explicitly 
tested (Baresi & Garriga, 2020; Clemson, 2014). 

● Interface Contract Testing 

Borrowing from contract testing practices common in 
service‑oriented architectures (Kesarpu, 2025), the 
harness includes “consumer‑driven contract tests”: 
for a given contract interface, the harness generates 
expected usage patterns from client contracts or 
off‑chain services, then validates that the contract 
adheres to its interface guarantees. This includes 
verifying invariants: e.g., token balances sum 
correctly after transfers, reentrancy guards behave as 
expected, access control rules hold, and event 
emissions are consistent. 

● Automated Regression Testing 

Once an interaction graph is defined, the harness can 
periodically re‑run interaction tests with previously 
generated harness‑level invocation sequences, as 
well as new fuzz‑generated calls, to ensure that 
contract upgrades, refactors, or parameter changes 
do not introduce regressions. This continuous 
verification step is analogous to microservices 
regression testing practices (André, 2018) and fosters 
maintainability in evolving contract systems. 

Microservice‑style Contract Composition Module 

Recognizing that smart contract systems often 
evolve, with modules added, upgraded, or replaced 
independently, SecureFuzz‑Smart incorporates a 
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modular deployment and testing workflow inspired 
by agile and microservices methodologies. 

● Isolation and Ownership Boundaries 

Drawing on insights from software quality research, 
which shows that unclear code ownership and 
frequently shifting contributors can degrade quality 
(Bird et al., 2011), SecureFuzz‑Smart recommends 
establishing strict ownership and module boundaries 
akin to microservice teams. Each contract module is 
developed, tested, and fuzzed separately before 
integration. Ownership boundaries reduce implicit 
coupling and unclear dependencies, minimizing 
inadvertent side-effects when modifying one module. 

● Incremental Integration and Deployment 

After individual module testing, modules are 
integrated in pairs (or small sets), tested using the 
interaction harness, and then gradually composed 
into the full system. This staged approach reduces the 
risk of emergent bugs from complex 
interdependencies. It mirrors incremental release 
and integration techniques advocated in agile and 
microservices development (Cohn, 2010; Crispin & 
Gregory, 2009). 

● Continuous Testing and Monitoring 

Beyond pre‑deployment testing, SecureFuzz‑Smart 
advocates for continuous fuzzing and interaction 
testing in a staging environment that simulates 
mainnet conditions (block gas limits, transaction 
ordering, multiple participants). This helps to detect 
regressions introduced by updates or environmental 
changes (e.g., gas price changes, external contract 
upgrades). The approach reflects microservices’ 
emphasis on continuous integration and continuous 
delivery (CI/CD) and interface contract monitoring 
(Baresi & Garriga, 2020). 

Integration Flow 

In a typical development pipeline using 
SecureFuzz‑Smart: 

1. Developers write or update a contract 
module. 

2. Module is compiled and instrumented. 

3. Fuzzing Engine runs extensive fuzz-generated 
invocation sequences to test individual functions and 
state transitions. 

4. Once module fuzzing passes with acceptable 
coverage and no observed anomalies, module owners 
declare it “fuzz‑hardened.” 

5. Fuzz‑hardened modules are composed via 
the Contract Interaction Harness, defining the 
interaction graph. 

6. Interaction tests (both fuzz-generated and 
harness‑driven) are run. 

7. Upon passing, modules proceed to 
integration testing, simulating real-world deployment 
conditions. 

8. After successful integration, modules may be 
deployed to testnet and, eventually, mainnet—with 
periodic re‑runs of fuzzing and interaction tests to 
detect regressions. 

Rationale for Methodology 

The rationale for this layered, multi‑technique 
approach stems from limitations of existing smart 
contract testing practices: 

● Static analysis and formal verification, though 
powerful, often do not capture dynamic, runtime 
behaviors involving gas constraints, external calls, 
reentrancy, or fallback logic. 

● Manual audits are human-intensive and may 
miss corner‑case interactions, especially in composite 
systems. 

● Existing smart contract fuzzers (e.g., 
ContractFuzzer) primarily focus on individual 
contracts independently. They may fail to simulate 
complex multi‑contract interactions or off‑chain to 
on‑chain sequences. 

By combining coverage‑guided fuzzing, 
interface‑aware stateful fuzzing, microservice‑style 
composition and interaction testing, and continuous 
integration practices—SecureFuzz‑Smart aims to 
provide a practical, scalable, systematic testing 
framework tailored to the complexity and dynamicity 
of smart contract ecosystems. 

RESULTS 

Given the novelty of SecureFuzz‑Smart, empirical 
deployment in live smart contract ecosystems 
remains for future work. However, to illustrate its 
potential, we present a descriptive analysis of how 
SecureFuzz‑Smart would have likely mitigated or 
detected vulnerabilities in historical smart contract 
failures, along with hypothetical metrics derived from 
analogous systems (e.g., fuzzing UNIX utilities, kernel 
drivers, protocol implementations). 

Case Study Analysis: Historical Failures 

● DAO Hack (2016): The DAO exploit was 
partially rooted in complex contract logic interacting 
with investor‑vote withdrawal, splitting mechanisms, 
and reentrancy vulnerabilities. A fuzzing engine 
generating random and adversarial transaction 
sequences could have triggered reentrancy by 
repeatedly invoking withdrawal logic under 
intermediate state modifications, thereby revealing 
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that the contract permitted re‑entry into vulnerable 
states. An instrumented environment logging state 
mutations post‑reentrancy would flag inconsistency 
or misuse of funds. Hence, SecureFuzz‑Smart’s 
Fuzzing Engine could have raised red flags before 
deployment, giving auditors a concrete test case 
rather than relying on manual review alone (Finley, 
2016). 

● BatchOverflow Exploit (2025): This exploit 
reportedly created trillions of tokens by exploiting an 
integer overflow/underflow vulnerability in token 
minting or transfer logic, combined with unexpected 
edge-case inputs. Coverage‑guided fuzzing with 
integer boundary mutation and interface-aware 
random data could have surfaced overflow conditions 
by testing extremely large or negative values. Stateful 
fuzzing over multiple token transfers, minting, and 
burning actions could reveal balance anomalies or 
arithmetic wrap‑around. Consequently, 
SecureFuzz‑Smart would identify such vulnerabilities 
during pre‑deployment testing (Town, 2025). 

These retrospective analyses suggest that our 
framework could have prevented or alerted 
developers to these catastrophic failures. 

Hypothetical Coverage and Vulnerability Detection 
Metrics 

Based on empirical results from traditional fuzzing 
and software reliability research, we can 
conservatively hypothesize potential improvements 
in smart contract robustness: 

● Increased branch coverage: In studies of 
fuzzing UNIX utilities, random fuzzing uncovered 
crash conditions in roughly 9–14% of tested utilities 
before any manual bug hunting (Miller et al., 1990). 
Translating to smart contract contexts, applying 
widespread fuzzing across contract functions could 
raise the probability of discovering edge-case 
vulnerabilities from near-zero (without fuzzing) to 
double‑digit percentages before deployment. 

● Discovery of complex stateful bugs: 
Interface‑aware fuzzing in kernel drivers (Corina et 
al., 2017) and protocol‑state fuzzing of TLS 
implementations (Ruiter & Poll, 2015) demonstrated 
that deep stateful interactions—such as multiple 
sequences of calls, unexpected counter values, and 
mixed message ordering—could be systematically 
and automatically explored, revealing vulnerabilities 
not identifiable via static analysis or manual review. 
For smart contracts, similar improvements in 
detection rates can be expected, particularly for 
reentrancy, fallback logic, gas limit edge cases, and 
invariant violations. 

● Reduction of critical vulnerabilities: By 
repeatedly testing integrated systems under 
adversarial conditions, regression testing and 
continuous fuzzing make it more difficult for critical 
bugs to slip into production. Over time, the overall 
density of high-severity bugs per thousand lines of 
code (KLOC) should decline, increasing overall 
reliability and user trust. 

Although these metrics are hypothetical and 
contingent on realistic deployment, they 
demonstrate that SecureFuzz‑Smart could 
significantly elevate the baseline security posture of 
smart contract ecosystems. 

DISCUSSION 

The proposed SecureFuzz‑Smart framework 
represents a paradigm shift in how smart contract 
reliability is approached—from episodic manual 
audits to continuous, automated, integrated testing 
rooted in decades of software engineering research. 
By unifying fuzzing techniques, microservices testing 
discipline, and contract testing practices, the 
framework acknowledges that smart contract 
ecosystems are not isolated utilities but dynamic, 
interacting services subject to stateful behavior, 
adversarial input, and compositional complexity. 

Benefits and Theoretical Implications 

1. Systematic Exposure of Hidden 
Vulnerabilities: Traditional static analysis and code 
review often fail to reveal vulnerabilities that 
manifest only under specific runtime conditions (e.g., 
gas exhaustion, fallback calls, reentrancy under 
certain call orders). SecureFuzz‑Smart’s fuzzing 
engine systematically explores those conditions, 
increasing the likelihood of discovering edge-case and 
emergent bugs. 

2. Improved Compositional Testing: Many 
exploits arise not from flaws in a single contract but 
from interactions across contracts (e.g., governance, 
token, vault, oracle services). The Contract 
Interaction Harness simulates realistic inter-contract 
behaviors, enabling detection of integration 
vulnerabilities before deployment, akin to 
microservice integration testing. 

3. Support for Continuous Deployment and 
Iterative Improvement: With modular testing, 
incremental integration, and continuous fuzzing, 
contract systems can evolve without sacrificing 
security. This supports agile development models 
common in decentralized finance (DeFi) and 
governance systems, where rapid iteration is often 
desirable but risky. 

4. Lower Barrier for Developers: While formal 



American Journal of Applied Science and Technology 119 https://theusajournals.com/index.php/ajast 

American Journal of Applied Science and Technology (ISSN: 2771-2745) 
 

 

verification remains a gold standard, it often requires 
specialized expertise and can be resource-intensive. 
SecureFuzz‑Smart offers a practical, automated, 
developer‑friendly complement that provides 
significant coverage with minimal overhead. 

5. Cross‑Domain Generalizability: The 
integration of microservices testing and fuzzing 
principles means that SecureFuzz‑Smart is not limited 
to blockchain. Its core techniques could be adapted 
to any environment where modular, stateful, 
service‑oriented components interact under 
adversarial conditions. 

Limitations 

Despite these advantages, SecureFuzz‑Smart has 
several limitations and potential challenges: 

● Resource Intensity: Coverage‑guided fuzzing, 
stateful sequence generation, and repeated 
interaction testing require substantial computational 
resources, particularly for large, complex contract 
systems with many modules. For smaller teams or 
cap‑constrained projects, this may be prohibitive. 

● Incomplete Semantics Capture: While fuzzing 
can generate a wide range of invocation patterns, it 
may still miss semantic contradictions or logic 
vulnerabilities that depend on business-level 
invariants (e.g., token vesting schedules, off‑chain 
oracle behavior, time‑dependent logic). 
Completeness is not guaranteed. 

● False Confidence: Passing extensive fuzzing 
and interaction testing does not guarantee immunity 
to all vulnerabilities—particularly ones involving 
external dependencies, oracle manipulations, or 
emergent behaviors triggered under market 
conditions. There is a risk of over-relying on 
automated tests and underestimating residual risk. 

● Complex Test Harness Setup: Defining 
accurate interaction graphs, preparing realistic 
contract dependencies, and modeling off‑chain 
interactions can be non‑trivial. Errors or omissions in 
harness configuration may lead to blind spots. 

● Scalability as Systems Grow: As the number of 
contracts and interactions increases, the 
combinatorial explosion of possible invocation 
sequences may make exhaustive fuzzing impossible. 
Prioritization and heuristics will be necessary—
introducing the risk of missing certain classes of bugs. 

Future Research Directions 

Several avenues exist for future work to further 
strengthen the SecureFuzz‑Smart framework and 
validate its efficacy in real-world deployments: 

● Empirical Validation on Live Contracts: 

Deploy SecureFuzz‑Smart on existing open‑source 
smart contract projects (e.g., DeFi platforms, DAO 
governance systems) to measure its bug-finding rate, 
coverage metrics, runtime overhead, and impact on 
developer workflow. 

● Heuristic and Machine Learning‑guided 
Sequence Generation: Incorporate heuristics or 
learning-based approaches to prioritize fuzzing inputs 
and transaction sequences more likely to reveal 
vulnerabilities, addressing combinatorial explosion 
and improving resource efficiency. 

● Integration with Formal Verification: 
Combine fuzzing with formal verification methods—
using fuzzing to find counter‑examples or unexpected 
behaviors before or after formal proofs—to deliver 
both pragmatic testing and rigorous guarantees. 

● Modeling Off‑chain Interactions and External 
Dependencies: Extend the harness to simulate 
oracles, price feeds, external calls, scheduled tasks, 
and cross-chain communication, capturing more of 
the real-world complexity in which contracts operate. 

● Standardization and Tooling for Developer 
Adoption: Develop user-friendly tooling, 
documentation, and standard workflows to lower 
adoption barriers, encouraging broad uptake in smart 
contract development communities. 

CONCLUSION 

Smart contracts and decentralized applications 
promise to revolutionize how we design and deploy 
trustless systems, but their potential remains 
hampered by persistent vulnerabilities and repeated 
high-profile failures. Traditional software testing, 
manual audits, and static analysis—while valuable—
are insufficient to guarantee security in the complex, 
stateful, adversarial, and compositional world of 
blockchain applications. 

The SecureFuzz‑Smart framework we propose offers 
a pragmatic, theoretically grounded, and systematic 
approach. By combining advanced fuzzing 
techniques, microservices-inspired composition and 
contract testing, and continuous integration 
principles, it provides a robust methodology to 
discover and mitigate vulnerabilities before 
deployment—and to maintain resilience over time as 
systems evolve. 

While not a panacea, SecureFuzz‑Smart represents a 
significant step toward professionalizing smart 
contract engineering with the rigor long established 
in traditional software development. With continued 
research, empirical validation, and tooling, it could 
form the foundation of a new standard for secure, 
reliable decentralized systems. 
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