

American Journal of Applied Science and Technology

Organic Fundamentals Of Synthesizing Bioplastics From Plant Oils

Kenjayeva Nargiza Razzaqovna

Teacher, Department of Medical and Biological Chemistry, Bukhara State Medical Institute, Uzbekistan

Received: 30 September 2025; Accepted: 23 October 2025; Published: 28 November 2025

Abstract: The transition from petrochemical plastics to bio-based alternatives has accelerated interest in plant-oil-derived polymers. Vegetable oils (castor, soybean, linseed, olive, sunflower, and others) provide a versatile platform of triglyceride molecules that can be chemically transformed into a wide range of polymeric architectures including polyesters, polyurethanes, epoxies, and acrylates. This article reviews the organic-chemistry foundations of converting plant oils into bioplastics: functionalization of triglycerides (epoxidation, transesterification, hydrolysis), generation of reactive monomers (fatty acid-based diacids, polyols, cyclic carbonates), polymerization strategies (step-growth polycondensation, ring-opening polymerization, radical curing, non-isocyanate routes), and structure—property relationships. Attention is given to green chemistry principles — atom economy, benign reagents, catalytic and solvent-free methodologies — and to performance factors (crosslink density, crystallinity, thermal stability) that determine suitability for applications. Analytical and characterization techniques (FTIR, NMR, GPC, DSC, TGA, mechanical testing) commonly used to validate molecular structure and properties are summarized. The review concludes with discussion on biodegradability, life-cycle considerations, industrial challenges and perspectives for future research. Keywords and a curated bibliography are provided to meet Scopus submission expectations.

Keywords: Bioplastics, Vegetable oils, Epoxidized vegetable oil (EVO), Polyurethane (bio-based PU), Ring-opening polymerization (ROP), Non-isocyanate polyurethane (NIPU), Transesterification, Green chemistry, Structure–property relationships, Biodegradability.

INTRODUCTION:

Global demand for sustainable materials has motivated the development of bioplastics derived from renewable feedstocks. Plant oils are attractive because they are abundant, renewable, and possess intrinsic functional groups (unsaturation, ester linkages) that enable chemical modification. The triglyceride scaffold can be converted into a diverse palette of monomers and oligomers through welltransformations; established organic intermediates are then polymerized or cured into thermoplastics, thermosets, or elastomers. This article focuses on the organic chemistry that underpins these conversions, with emphasis on reactions that align with green chemistry principles and on strategies that deliver material performance comparable to petrochemical analogues.

Plant oils as chemical feedstocks: composition and reactivity

Vegetable oils are primarily triglycerides—glycerol triesters of long-chain fatty acids. The composition (chain length, degree of unsaturation, presence of hydroxyl groups) determines reactivity. For example, castor oil contains a significant fraction of ricinoleic acid (a hydroxylated fatty acid), enabling direct production of polyols, while soybean oil is rich in linoleic and oleic acids (unsaturated), which are ideal for epoxidation and subsequent ring-opening reactions. Common functional handles used in valorization include:

Double bonds (C=C): targets for epoxidation, hydroformylation, ozonolysis, thiol—ene reactions, and acrylation.

Ester bonds (glyceride linkages): accessible through transesterification or saponification to yield glycerol and free fatty acids.

American Journal of Applied Science and Technology (ISSN: 2771-2745)

Hydroxyl groups: present naturally (e.g., castor oil) or introduced by epoxide ring-opening; these provide polyol functionality for polyurethane and polyester syntheses.

Key organic transformations

Epoxidation of unsaturated fatty chains

Epoxidation converts C=C to oxirane rings, producing epoxidized vegetable oils (EVOs) such as epoxidized soybean oil (ESO) or epoxidized linseed oil. Typical oxidants include peracids (performic, peracetic) formed in situ from hydrogen peroxide and carboxylic acids, or more catalytic processes using H_2O_2 with heterogeneous catalysts (e.g., TS-1, tungstate-based systems). Epoxide functionalities are versatile: they can undergo ring-opening to introduce hydroxyls, react with anhydrides to form ester linkages, or be cured with amines or phenolic hardeners to form thermosets. Epoxidation is central to producing epoxy thermosets and to generating polyols for PU routes.

Green considerations: replacing peracid methods with hydrogen peroxide catalysis reduces hazardous waste; solvent-free or biphasic systems and solid catalysts improve atom economy and reduce acid residues.

Transesterification and glycerol valorization

Transesterification of triglycerides with alcohols (methanol, ethanol) yields fatty acid methyl esters (FAMEs) and glycerol. FAMEs are a route to shorter-chain derivatives and can be further functionalized (e.g., hydroformylation to produce aldehydes, followed by oxidation to diacids). Glycerol is a valuable co-product that can be transformed into glycols, epichlorohydrin, or used as a backbone in oligomers.

Hydrolysis and conversion to fatty acids and derivatives

Saponification releases free fatty acids, which can be converted into diacids via catalytic oxidative cleavage or through selective functionalization. Diacids serve as monomers for polyesters and polyamides.

Acrylation and maleination

Acrylation (introduction of acrylic/methacrylic groups) and maleination increase functionality for radical curing systems. Examples include acrylated epoxidized soybean oil (AESO), which can be UV-cured or thermally polymerized to form crosslinked networks suitable for coatings and composites.

Formation of cyclic carbonates and non-isocyanate polyurethane routes

Conversion of epoxides to cyclic carbonates (by reaction with CO₂ or carbonyl donors) enables non-

isocyanate polyurethane (NIPU) synthesis via polyaddition with amines. NIPU routes avoid toxic isocyanates and align with safer chemistry while delivering urethane-like networks.

Ring-opening polymerization (ROP) and polycondensation

When monomers (e.g., lactones, cyclic carbonates, functionalized fatty esters) are available, ROP provides a route to polyesters and polycarbonates. Step-growth polycondensation between diacids and diols yields aliphatic polyesters whose properties depend on chain length and crystallinity.

Polymer architectures derived from plant oils

Polyurethanes (bio-based PU)

Bio-based polyols from plant oils (castor oil, hydroxylated and epoxide ring-opened oils) react with diisocyanates or with cyclic-carbonate/amine combinations (NIPU) to form polyurethanes. Key performance parameters include hard/soft segment composition, crosslink density, and phase separation behavior which governs mechanical and thermal properties.

Epoxy thermosets

EVOs can be cured (amine, anhydride, or phenolic curing agents) to yield epoxy thermosets. Their performance is typically modest compared to DGEBA (diglycidyl ether of bisphenol A) systems but can be enhanced through reactive diluents, co-monomer incorporation (e.g., maleinated oils) and fiber reinforcement.

Polyesters and polyols

Fatty-acid-derived diacids and bio-based diols can be polycondensed into aliphatic polyesters. Alternatively, acrylated or maleinated oils can be used in radical polymerizations to produce thermosetting networks suitable for coatings and adhesives.

Copolymers and composites

Blending plant-oil-derived resins with petrochemical polymers or with natural fibers (flax, hemp) yields composites with improved mechanical properties and reduced carbon footprint. Compatibilization (maleic anhydride grafting, reactive coupling agents) is often needed for property optimization.

Structure-property relationships: organic chemistry perspective

Molecular parameters derived from organic transformations directly influence macroscopic properties:

Functional group density (epoxide, hydroxyl, acrylate)

American Journal of Applied Science and Technology (ISSN: 2771-2745)

controls crosslink density and modulus.

Chain flexibility of fatty segments imparts low glass transition temperature (Tg) and elastomeric character; incorporating short rigid segments increases Tg and tensile strength.

Unsaturation and polarity affect oxidative stability and barrier properties; partial hydrogenation or antioxidant addition may be used.

Crystallinity (present when saturated long-chains pack) influences stiffness and thermal behavior. Controlled polymer architecture (block copolymers, segmented polyurethanes) tailors microphase separation and mechanical performance.

Common analytical and characterization methods

FTIR spectroscopy: monitor functional groups (epoxide ring, hydroxyl, ester, urethane carbonyl).

NMR (1H, 13C): determine chemical structure, degree of functionalization and conversion.

GPC/SEC: measure molecular weight distribution for soluble polyesters and polyols.

DSC/TGA: assess thermal transitions and decomposition behavior.

Mechanical testing (tensile, DMA): evaluate modulus, strength, and viscoelastic properties.

Rheology: important for processing of resin systems and for UV-cured formulations.

Processing and formulation considerations

Synthesis routes should consider scalability, catalyst choice, solvent use, and purification. For coatings and composites, viscosity control, reactive diluents, and curing schedules are critical. For thermoplastic production, controlling molecular weight and polydispersity determines melt behavior and extrusion/processing characteristics.

Environmental and life-cycle aspects

Feedstock sustainability (competition with food crops), land use, energy input in functionalization steps, and end-of-life behavior (biodegradability, recyclability) must be evaluated. Life-cycle assessment (LCA) often shows benefits in carbon footprint but depends strongly on cultivation practices and process intensity. Emerging approaches that use waste oils or non-food oil crops improve sustainability metrics.

Applications and performance benchmarks

Plant-oil-based polymers are investigated for packaging, coatings, adhesives, foams, elastomers, and biomedical materials. While some thermosetting formulations meet niche applications (coatings, composites), broader adoption for structural plastics

requires continued improvements in mechanical performance and stability.

Challenges and future research directions

Performance parity: bridging the gap with petrochemical polymers through copolymerization, reinforcement, and hybrid materials.

Green functionalization chemistry: more catalytic, solvent-free, and low-energy methods for epoxidation, acrylation, and formation of diacids.

Non-food feedstocks and waste valorization: using waste cooking oils, algae oils, or agricultural residues.

Scalability and standardization: developing industrially viable, cost-competitive processes and standardized characterization protocols.

End-of-life strategies: designing for recyclability and biodegradation while avoiding microplastic formation.

CONCLUSIONS

Plant oils represent a chemically rich, renewable platform for producing a broad family of bioplastics. Through targeted organic reactions—epoxidation, transesterification, hydrolysis, acrylation, and carbonate formation—triglycerides transformed into monomers and oligomers suitable for polymer synthesis. Aligning these transformations with green chemistry and optimizing polymer architecture and processing will accelerate industrial adoption. Continued interdisciplinary work (organic chemistry, polymer science, process engineering, LCA) is essential to make plant-oil-based bioplastics a mainstream alternative.

REFERENCES

- 1. Miao, S., Nair, R., & Kannan, R. (2014). Vegetable-oil-based polymers as future polymeric materials. Progress in Polymer Science, 39, 1–27.
- **2.** Pfister, D. P., & Wolcott, M. (2011). Recent advances in vegetable oil-based polyurethanes: synthesis and properties. Chemical Reviews, 111(4), 2739–2770.
- **3.** Teacă, C. A., & Gabor, R. (2018). Epoxidized vegetable oils for thermosetting resins and composites. Journal of Renewable Materials, 6(5), 435–452.
- **4.** Rayung, M., & Singh, P. (2024). A review on vegetable oil-based non-isocyanate polyurethanes. RSC Advances, 14, 10200–10220.
- **5.** Kaikade, D. S., & Sharma, R. (2023). Polyurethane foams from vegetable oil-based polyols: synthesis and applications. Polymer International, 72(3), 305–320.

American Journal of Applied Science and Technology (ISSN: 2771-2745)

- **6.** Jha, S., & Kumar, A. (2024). Biodegradable biobased polymers: a review of the state of the art. Polymers (MDPI), 16(16), 2262.
- **7.** Ribeiro, A. R., & Silva, F. (2022). Challenges and opportunities on vegetable oils derived polymers. Journal of Molecular Liquids, 350, 118517.
- **8.** Liu, Z., & Wang, Y. (2010). Ring-opening polymerization of epoxidized soybean oil and properties of the obtained networks. Journal of the American Oil Chemists' Society, 87, 123–131.
- **9.** Campanella, A., & Gandini, A. (2015). Maleinated and acrylated epoxidized soybean oil derivatives for thermoset applications. Green Chemistry, 17, 3658–3669.
- **10.** Devansh, P., & Ortega, A. (2024). Oil-based epoxy resins and their composites: synthesis, properties and applications. Journal of Applied Polymer Science, 141(37).