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Abstract: Video frame errors caused by data corruption, compression artifacts, or transmission noise can severely 
impact visual quality and automated analysis. This paper presents a lightweight and interpretable algorithm for 
detecting such errors using color histogram analysis. The method constructs and normalizes histograms across RGB 
channels, identifies the frequency of color oscillations, and classifies frames as normal or erroneous based on a 
minimal oscillation threshold. Experimental evaluations confirm that the approach is efficient, suitable for real-time 
applications, and effective in detecting visually corrupted frames. 
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Introduction:

Video streaming and recording technologies frequently 
encounter frame-level distortions due to packet loss, 
sensor noise, or hardware malfunctions [1]-[2]. 
Detecting such anomalies is crucial in applications 
ranging from video surveillance and broadcasting to 
autonomous systems and medical imaging. 

Conventional error detection techniques often require 
heavy computations, including optical flow analysis or 
machine learning-based models, which may not be 
feasible in resource-constrained environments. We 

propose a novel, rule-based approach that relies solely 
on statistical properties derived from per-channel color 
histograms. 

The remainder of this paper is organized as follows: 
Section 2 presents a detailed review of related work in 
the field of video frame quality assessment, comparing 
motion-based, deep learning-based, and histogram-
based methods. Particular emphasis is placed on the 
limitations of conventional algorithms that rely on 
motion estimation or complex models, thereby 
motivating the development of a lightweight, frame-
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level solution. Section 3 introduces the proposed RGB 
histogram oscillation algorithm, detailing the stages of 
histogram computation, normalization, oscillation 
thresholding, and the decision rule for classifying 
frames as normal or erroneous. Section 4 describes the 
experimental setup and provides quantitative results 
demonstrating the method’s ability to achieve over 
94% overall accuracy in distinguishing visually 
corrupted frames from valid ones. Section 5 discusses 
the practical benefits and limitations of the approach, 
including its applicability to real-time, resource-

constrained environments and challenges such as false 
positives in low-texture scenes. The discussion also 
suggests possible enhancements such as adaptive 
thresholding or minimal temporal smoothing to 
improve robustness. Finally, Section 6 concludes the 
study by summarizing the main contributions and 
outlining directions for future research, including 
application to thermal and grayscale video streams. 

 

 

Figure 1. Visual comparison of a normal frame and a corrupted frame. 

Figure 1 illustrates a comparative visual example of a 
normal frame and a corrupted frame, demonstrating 
typical degradation artifacts such as blocking, blurring, 
and partial signal loss. This visual distinction 
underscores the motivation for developing an 
automated detection approach based on RGB 
histogram oscillation analysis. 

Related Work 

In recent years, the challenge of detecting frame-level 
errors in video streams has received growing attention 
due to its importance in real-time monitoring, 
surveillance, and automated video analytics. 
Traditional approaches have primarily relied on motion 
estimation, temporal consistency, or compressed-
domain features, which can be computationally 
intensive and unsuitable for resource-constrained or 
real-time environments. More recent research 
explores deep learning-based solutions, particularly 
convolutional neural networks (CNNs) and temporal 
models, for identifying corrupted or anomalous frames. 
This section reviews the state-of-the-art in frame error 
detection, categorizing prior work into two main 
approaches: motion-based and histogram or learning-
based techniques. By examining their strengths and 
limitations, we outline the research gap this study 
addresses—introducing a lightweight, training-free 
algorithm based on RGB histogram oscillation patterns 

for efficient and interpretable frame integrity 
assessment. 

In [3], Xiang et al. proposed the Efficient Spatio-
Temporal Boundary Matching Algorithm (ESTBMA) for 
concealing errors in H.264/AVC video streams by 
integrating spatial and temporal distortion cues. Their 
method improved PSNR and visual quality compared to 
AMV and BMA techniques. However, it relies on 
motion vectors and inter-frame data, limiting real-time 
applicability. In contrast, our method uses per-frame 
RGB histogram oscillations for detecting corrupted 
frames without motion analysis. This makes it 
lightweight, interpretable, and suitable for real-time, 
raw video stream scenarios. In [4], Nguyen and Shashev 
surveyed classical video tracking methods including 
background subtraction, optical flow, and Gaussian 
mixture models. They highlighted challenges like 
brightness shifts, occlusion, and histogram 
inconsistencies. While effective for motion-based 
detection, these methods depend on temporal 
coherence and inter-frame processing. In contrast, our 
method analyzes single-frame RGB histogram 
oscillations to detect corrupted frames without motion 
or training. This ensures domain independence and 
suitability for real-time, uncompressed video 
applications. In [5], Gavrilov developed a hardware–
software system to assess object detection quality in 
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simulated 2.5D video scenes using segmentation and 
deviation metrics. While effective for controlled 
evaluations, the method depends on synthetic data 
and pre-trained models. In contrast, our approach 
detects corrupted frames in real-time using RGB 
histogram oscillation without object masks or training. 
This makes it lightweight and directly applicable to raw 
video streams.  

In [6], Xu et al. introduced a multi-stream attention-
aware graph convolutional network (GCN) for salient 
object detection in videos. The model combines 
superpixel-level spatiotemporal graphs with edge-
gated GCNs and attention fusion to enhance object 
boundary preservation. Although effective, it relies on 
motion estimation and optical flow, resulting in high 
computational overhead. Their approach suits 
structured, high-resource environments. In contrast, 
our method uses RGB histogram oscillation analysis to 
detect corrupted frames without motion input or 
training. This enables lightweight, real-time video 
integrity assessment in raw or resource-limited 
scenarios. In [7], Ameur et al. proposed a deep multi-
task learning (MTL) model for identifying single and 
multiple distortions in images and videos. The 
architecture uses a shared CNN (DenseNet-169) and 
separate task-specific classifiers for each distortion 
type. Their method achieved state-of-the-art accuracy 
on various datasets but requires significant 
computational resources and training data. While 
effective in controlled environments, it is less suited for 
real-time, resource-constrained applications. In 
contrast, our RGB histogram-based algorithm detects 
corrupted frames without training or motion analysis, 
making it lightweight and interpretable for real-time 
deployment. Our method addresses visual corruption 
directly at the pixel distribution level with minimal 
complexity. In [8], Shankar et al. introduced a deep 
learning-based object detection quality assessment 
model for UHD videos using spatial feature extraction 
and LSTM for temporal scoring. The method 
demonstrated strong performance on UHD datasets 
but required a super-resolution pipeline and training 
on high-quality annotated data. While effective in 
visual quality assessment, the model’s complexity 
limits real-time deployment. In contrast, our approach 
uses RGB histogram oscillation analysis without 
training or temporal dependencies, making it suitable 
for lightweight and real-time corrupted frame 
detection. In [9], Yang et al. introduced a two-stream 
fusion framework for abnormal event detection in 
video surveillance by combining pose estimation, 
object classification, optical flow, and adversarial 
learning. Their model effectively detects diverse 
human and object-based anomalies using deep 

learning and graph-based spatiotemporal analysis. 
However, it requires substantial training data, pose 
estimation, and optical flow calculation. In contrast, 
our method bypasses deep models entirely, using RGB 
histogram oscillation analysis for lightweight, real-time 
detection of corrupted frames without training or 
temporal dependencies.  

In [10], Huizhen et al. proposed a dual-stream mutually 
adaptive quality assessment model that uses VQ-VAE 
and Vision Transformer (ViT) for unsupervised quality 
prediction of authentically distorted images. Their 
method fuses semantic and distortion features to 
predict quality distribution using standard deviation 
labels. While effective on both authentic and synthetic 
databases, it relies on complex networks and significant 
training. In contrast, our RGB histogram oscillation-
based method requires no learning, enabling real-time 
detection of corrupted video frames with minimal 
computation. This simplicity makes our approach more 
suitable for embedded or resource-constrained 
scenarios. In [11], Zhang et al. proposed a deep 
learning-based framework for predicting Object-Wise 
Just Recognizable Distortion (OW-JRD) to support video 
compression optimized for machine vision tasks. Their 
model used a large-scale dataset and a binary classifier 
to predict whether distortions affect object 
detectability under varying compression levels. While 
effective, it relies on supervised learning, annotated 
datasets, and deep architectures, which may not suit 
real-time applications. In contrast, our method uses 
RGB histogram oscillation analysis to detect visually 
corrupted frames without training or semantic 
information, making it simpler and better suited for fast 
error detection in raw video streams. In [12], Du et al. 
presented an integrated framework for evaluating 
distortion correction methods in fisheye video object 
detection using YOLOv3 and RAPiD. Their study found 
that longitude-latitude correction combined with 
YOLOv3 achieved the best accuracy on fisheye 
datasets, while panorama correction yielded the 
highest speed. Although effective, their method 
requires image correction preprocessing and object 
detection pipelines. In contrast, our approach uses RGB 
histogram oscillation analysis to detect corrupted 
frames directly, without object detection or correction 
steps—making it lighter and more suitable for real-time 
video monitoring. In [13], Laktionov et al. developed a 
hardware-software solution for detecting complex-
shaped objects in video streams using ORB and SIFT-
based architectures on Raspberry Pi platforms. Their 
approach applied double-check mechanisms and 
parameter optimization to improve detection accuracy 
under constrained conditions. While efficient for object 
recognition with limited images, it still relies on 
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keypoint matching and predefined templates. In 
contrast, our method detects visually corrupted frames 
through RGB histogram oscillation analysis without 
templates or matching, offering a lighter, real-time 
solution suitable for raw video streams. 

Research Gap and Our Contribution 

While many existing techniques employ histogram 
analysis for object recognition [14]-[15], scene 
segmentation [16]-[17], and video summarization [18]-
[23], few address the specific challenge of detecting 
corrupted frames. Most prior approaches depend on 
motion estimation, temporal features, or deep 
learning, which are computationally demanding and 
unsuitable for real-time applications. 

This paper addresses the gap by introducing a real-time 
algorithm that uses static RGB histogram oscillation 
patterns to detect anomalies without relying on 
training or inter-frame analysis. 

Our key contributions are as follows: 

• We propose a novel histogram oscillation-based 
algorithm that detects visually corrupted frames 
using per-channel RGB analysis. 

• The method is computationally efficient and 
interpretable, making it suitable for embedded and 
real-time applications. 

• We provide empirical evidence demonstrating the 
effectiveness of the method in identifying low-
information frames with minimal visual content. 

Proposed Method 

• Overview 

The algorithm processes each video frame individually 
to assess the distribution of pixel values in each color 
channel (R, G, B). By constructing histograms and 
evaluating the number of bins with significant activity, 
the algorithm infers whether the frame exhibits 
sufficient visual variation. 

 

 

Figure 2. A block diagram of the proposed algorithm showing the steps 

• Flowchart Representation 

The overall process of the proposed algorithm is 
visually summarized in Figure 3. It begins by extracting 
RGB pixel values and constructing histograms for each 
channel. After determining the maximum histogram 

values, all histograms are normalized to a common 
scale. The algorithm then counts the number of bins 
with normalized values greater than 1 in each channel. 
If all three color channels have fewer than two such 
bins, the frame is classified as erroneous; otherwise, it 
is considered normal. 
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Figure 3. Flowchart of the RGB histogram oscillation-based algorithm for detecting 

erroneous video frames. 

Figure 3 outlines pixel-level processing, histogram 
normalization, oscillation counting, and the final 
decision logic. 

• Histogram Computation 

Given a frame, we extract RGB values for each pixel 
and compute histograms for the red q_gist, green 
y_gist, and blue k_gist channels: 

R, G, B = pixel [i] ⇒ q_gist[R]++,   y_gist[G]++,  k_gist[B]++    (1) 

This process is repeated over all pixels i = 0, 1, ..., N, 
where N is the total number of pixels in the frame. 

• Maximum Value Normalization 

To standardize the histogram values, we identify the 
maximum value across all three channels: 

q_max=max(q_gist), y_max=max(y_gist), k_max=max(k_gist) 

                        max_val=max(q_max, k_max)    (2) 

Then, each histogram is normalized: 

q_norm[i]=(q_gist[i]х255)/max_val,  y_norm[i]=(y_gist[i]х255)/max_val, 

k_norm[i]=(k_gist[i]х255)/max_val    (3) 
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Figure 4. Raw and Normalized Histograms of RGB Channels 

Figure 4 shows two plots. The top plot displays the raw 
histograms of pixel intensity distributions for the red, 
green, and blue channels in a sample video frame. The 
bottom plot shows the same histograms normalized to 
a common scale (0–255) using the maximum value 
across all channels. This normalization enables 

consistent comparison of color oscillation patterns for 
error detection. 

• Oscillation Detection 

We define an "oscillation" as a normalized histogram 
bin having a value greater than 1. We count the number 
of such oscillations in each channel: 

𝑞_𝑠𝑜𝑛𝑖 = ∑ 𝛿(𝑞_𝑛𝑜𝑟𝑚[𝑖] > 1)255
𝑖=0 , 𝑦_𝑠𝑜𝑛𝑖 = ∑ 𝛿(𝑦_𝑛𝑜𝑟𝑚[𝑖] > 1)255

𝑖=0   

𝑘_𝑠𝑜𝑛𝑖 = ∑ 𝛿(𝑘_𝑛𝑜𝑟𝑚[𝑖] > 1)255
𝑖=0    (4) 

Where δ (condition) = 1 if the condition is true, and 0 otherwise. 

• Classification Rule 

The decision rule is simple yet effective: 

If the number of oscillations in all three channels is less 
than 2, the frame is considered erroneous. Otherwise, 
it is classified as normal. 

If  q_soni < 2 and y_soni < 2 and k_soni < 2: 

 Frame → Erroneous 

else: 

 Frame → Normal 
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Figure 6. Decision Flowchart for RGB Histogram-Based Frame Classification 

RESULTS 

Table 1 summarizes the number of frames used in the 
evaluation and the corresponding detection accuracy 
for both normal and corrupted categories. Figure 7 

illustrates the oscillation count comparison across RGB 
channels for representative frame types. These values 
are from a single normal and erroneous frame, used to 
visually demonstrate the threshold rule applied across 
the full evaluation dataset summarized in Table 1. 

Table 1. Detection accuracy and frame count for normal and corrupted video frames 

Frame Type Number of Frames Detection Accuracy (%) 

Normal Frames 500 95.2 

Corrupted Frames 300 93.6 

Overall 800 94.6 

These results confirm that the algorithm effectively 
distinguishes corrupted frames from normal ones with 
high accuracy while maintaining real-time 

performance. 
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Figure 7. Oscillation Count Comparison for Normal and Erroneous Frames 

Figure 7 shows a comparison of oscillation counts 
across the red, green, and blue channels for both a 
normal and an erroneous video frame. In the normal 
frame, each channel exhibits a high number of 
histogram bins with values greater than 1, indicating 
significant color variation. In contrast, the erroneous 
frame demonstrates very low oscillation counts, 
reflecting minimal color activity and supporting its 
classification as a corrupted frame by the proposed 
algorithm. 

DISCUSSION 

The strength of this approach lies in its simplicity, 
speed, and transparency. Unlike machine learning-
based methods, our algorithm does not require training 
or large annotated datasets. Moreover, the 
interpretability of histogram-based analysis makes it 
attractive for explainable AI applications. 

However, the current version may misclassify very low-
texture frames (e.g., uniformly colored backgrounds) as 
erroneous. Future improvements could include 
adaptive thresholds or temporal analysis for 
refinement. 

CONCLUSION 

This study introduces an effective algorithm for 
detecting frame-level errors using RGB histogram 
oscillation analysis. The method is lightweight, fast, and 
interpretable—making it suitable for deployment in 
embedded video systems and real-time monitoring 
solutions. 

In future work, we plan to integrate temporal 
coherence checks and evaluate the method on diverse 
datasets including thermal imaging and grayscale 
content. 
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