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Abstract: Random number generation (RNG) plays a foundational role in security, cryptography, and system design. 
Operating systems today implement complex mechanisms for generating random numbers securely. This survey 
paper presents an overview of RNG techniques used in major operating systems, including Microsoft Windows, 
Linux, and macOS. We examine entropy sources, deterministic random bit generators (DRBGs), system APIs, and 
quality testing mechanisms. The survey highlights key differences between OS-level RNG designs and emphasizes 
best practices, challenges, and potential vulnerabilities. This work aims to serve as a reference for students, 
developers, and security professionals seeking a comparative understanding of secure randomness in computing 
environments. 
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Introduction:

Random numbers are fundamental to numerous 
areas of computing, including simulations, gaming, 
randomized algorithms, and, most critically, security 
and cryptography. In this context, randomness is not 
merely a matter of variability; it is a foundational 
element that underpins the unpredictability and 

strength of cryptographic operations. Secure 
cryptographic systems rely on high-quality random 
numbers to ensure that data remains confidential, 
integrity is preserved, and attackers are unable to 
predict or reproduce security-critical values [1]. 

The principle “randomness equals security” is 
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especially true in cryptography, where various 
components are designed to be resistant to analysis 
and guessing [2]. For instance: 

• Encryption Keys are generated using random 
data to ensure that no two keys are alike and that 
adversaries cannot derive them through any logical 
pattern. Predictable keys compromise the 
confidentiality of encrypted information. 

• Nonces (numbers used once) are used in 
encryption schemes and secure communications to 
guarantee uniqueness across operations. If reused or 
predictable, they can enable replay attacks or 
compromise the integrity of secure channels. 

• Salts are random values added to passwords 
before hashing to defend against precomputed 
attacks such as rainbow tables. Without salts, 
attackers could reverse-engineer hash values using 
known dictionaries of common passwords. 

• Secure Tokens, used in session management 
and password resets, must be generated with high 
entropy to prevent session hijacking or unauthorized 
access through token prediction. 

When randomness is weak or flawed, the entire 
security architecture becomes vulnerable. This has 
real-world implications: adversaries may be able to 
guess cryptographic keys, reproduce secure tokens, 
or even impersonate users in encrypted sessions [3]. 
The need for robust and unpredictable random 
numbers is therefore non-negotiable in the design of 
secure systems. 

Major security protocols such as: 

• TLS (Transport Layer Security), which secures 
web traffic (e.g., HTTPS) 

• VPNs (Virtual Private Networks), which 
encrypt internet communication 

• Digital Signatures, which verify the 
authenticity and integrity of data 

all critically rely on random number generation to 
protect against attacks. In these protocols, 
randomness is used during key exchange, digital 
signature generation, and session establishment. For 
example, the TLS handshake process involves the 
exchange of random values to derive session keys. If 
these values can be guessed, an attacker could 
decrypt the supposedly secure communication. 

To fulfill this essential role, modern operating systems 
(OSes) such as Microsoft Windows, Linux, and macOS 
embed RNGs at the core of their architecture. These 
RNGs are designed to gather entropy from a variety 
of unpredictable system-level sources, such as: 

• User input events (e.g., keyboard and mouse 

movements) 

• Timing variations in hardware activity (e.g., 
disk access or network latency) 

• Hardware-based noise generators (e.g., 
Intel's RDRAND or TPM modules) 

This entropy is then processed using 
cryptographically secure algorithms like AES in 
Counter (CTR) mode, ChaCha20, or SHA-based 
constructions, which expand limited entropy into 
large streams of high-quality pseudorandom bits. 

To ensure ease of use and standardization, operating 
systems expose APIs through which applications and 
developers can request random data. These APIs 
ensure that developers do not need to implement 
their own randomness logic—a task prone to critical 
errors [4]. For instance, Windows provides 
BCryptGenRandom as part of its Cryptography API: 
Next Generation (CNG); Linux offers /dev/random, 
/dev/urandom, and the getrandom() syscall; macOS 
includes functions such as arc4random() and 
SecRandomCopyBytes(). 

While the core objective of these RNGs is consistent 
across platforms—to provide secure, high-quality 
randomness—their architectural designs and 
cryptographic strategies vary significantly, influenced 
by: 

• Platform Architecture: Windows uses the 
CNG framework, Linux relies on device files and 
syscalls, and macOS integrates RNGs into system 
libraries like libSystem. 

• Entropy Collection Strategies: Some 
platforms aggressively incorporate entropy from 
hardware RNGs, while others depend more heavily on 
event-based or software sources. 

• Deterministic Random Bit Generator (DRBG) 
Standards: Many RNG implementations conform to 
NIST SP 800-90A standards, which define DRBGs 
based on AES, SHA-256, or HMAC constructions. 
However, some modern systems adopt stream 
ciphers like ChaCha20 for improved speed and 
security, particularly on resource-constrained or 
mobile platforms. 

This paper surveys the design and implementation of 
random number generation in major operating 
systems, highlighting the architectural differences, 
entropy-handling mechanisms, DRBG standards, and 
APIs used to facilitate secure randomness. By 
analyzing these systems, we aim to identify best 
practices, potential weaknesses, and future 
directions for enhancing randomness in computing 
platforms. 

Background and Importance 
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Random number generation (RNG) plays a 
foundational role in modern computing, especially in 
the field of cryptography, where the security of many 
algorithms and protocols hinges on the quality of 
randomness. Random numbers are crucial for 
generating encryption keys, initialization vectors, 
nonces, salts, secure session identifiers, and digital 
signatures. As such, the strength of encryption and 
the robustness of many security mechanisms are 
directly tied to the unpredictability and entropy of the 
underlying random number generation processes. An 
insecure RNG can lead to predictable outputs that 
undermine the entire security model of cryptographic 
systems [5]. 

The dangers of flawed RNGs have been demonstrated 
by real-world security incidents. One of the most 
notable examples is the Debian OpenSSL vulnerability 
that occurred between 2006 and 2008. In this case, a 
Debian developer mistakenly removed critical 
entropy-gathering code from the OpenSSL package, 
significantly weakening the randomness used to 
generate cryptographic keys. As a result, the affected 
systems produced a very limited number of possible 
keys—only 32,768 variations—making them highly 
susceptible to brute-force attacks. This vulnerability 
had far-reaching consequences, affecting SSH keys, 
SSL certificates, and other cryptographic elements 
across thousands of systems. It forced administrators 
worldwide to regenerate keys and re-secure their 
infrastructures, underscoring the catastrophic 
implications of insecure RNG implementations. 

To prevent such failures, modern operating systems 
and cryptographic libraries incorporate robust RNG 
designs composed of several interdependent 
components [6]. These typically include: 

• Entropy Sources: These are raw, 
unpredictable inputs collected from system behavior 
or dedicated hardware. Examples include timing 
variations in keystrokes, mouse movements, disk I/O 
latencies, and hardware-based noise generators (e.g., 
Intel's RDRAND, AMD’s RdSeed, or physical entropy 
devices like TPMs and HWRNGs). The quality of these 
sources is essential, as they form the basis of the 
system’s randomness. 

• Entropy Pool: This is a system-managed 
structure that aggregates the entropy gathered from 
various sources. The pool acts as a buffer, storing 
collected randomness until there is enough to 
securely seed a deterministic generator. Some 
systems maintain multiple pools for different 
purposes, and entropy accounting mechanisms are 
used to estimate how much unpredictability has been 
accumulated. For example, Linux uses separate pools 

for /dev/random and /dev/urandom, with blocking 
behavior depending on entropy availability. 

• Pseudorandom Number Generators (PRGs) 
or Deterministic Random Bit Generators (DRBGs): 
These are cryptographic algorithms designed to 
expand a limited amount of high-quality entropy into 
a long stream of random bits. Once seeded, these 
generators can rapidly produce large amounts of 
pseudorandom data. Common DRBGs are based on 
algorithms such as AES in counter mode (AES-CTR 
DRBG), HMAC constructions (HMAC DRBG), and 
secure hash functions (Hash DRBG). More recently, 
stream ciphers like ChaCha20 have also been adopted 
in RNG designs for both speed and security. These 
generators are typically compliant with NIST Special 
Publication 800-90A/B/C standards and are regularly 
reviewed for cryptographic soundness. 

• Application Programming Interfaces (APIs): 
To ensure usability and consistency, operating 
systems provide standardized APIs for developers to 
access random data. These APIs abstract away the 
internal complexity and guarantee secure outputs if 
used correctly. For example, Windows offers 
interfaces like BCryptGenRandom and 
RtlGenRandom; Linux exposes randomness through 
devices such as /dev/random, /dev/urandom, and the 
getrandom() syscall; macOS provides interfaces like 
SecRandomCopyBytes and arc4random(). The proper 
use of these APIs is essential, as bypassing them or 
misusing insecure alternatives (such as using non-
cryptographic RNGs like rand() or srand() in C) can 
introduce subtle but dangerous vulnerabilities. 

Overall, the integrity of random number generation 
systems is a critical pillar of digital security. A failure 
at this level can result in broken encryption, 
impersonation attacks, token prediction, or 
unauthorized data access. Hence, RNGs must be 
implemented, audited, and maintained with the 
highest standards of cryptographic rigor. As threats 
evolve and new vulnerabilities are discovered, 
operating system vendors continue to enhance the 
design and performance of their RNG subsystems, 
ensuring that the cryptographic primitives depending 
on them remain robust and trustworthy. 

Random Number Generation in Operating Systems 

o RNG in Microsoft Windows 

Microsoft Windows employs a robust cryptographic 
framework known as Cryptography API: Next 
Generation (CNG) to handle cryptographic services, 
including random number generation. At the core of 
Windows' RNG system lies an implementation of a 
Deterministic Random Bit Generator (DRBG) based on 
the AES block cipher in Counter (CTR) mode, which is 
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compliant with the NIST SP 800-90A standard. This 
ensures both compliance with federal cryptographic 
guidelines and a high level of cryptographic strength 
suitable for secure communications and system-level 
operations [7]. 

Entropy Sources 

Windows collects entropy from multiple hardware 
and software sources to populate its internal entropy 
pool. The diversity of these sources helps enhance the 
unpredictability and resistance against entropy 
exhaustion or manipulation: 

• Hardware Random Number Generators 
(HRNGs): Windows utilizes hardware RNGs when 
available, such as Intel’s RDRAND instruction, which 
provides high-speed, hardware-generated entropy. 

• Timing of System Events: The system records 
time variations in low-level events, such as interrupts 
and system calls, to capture unpredictability arising 
from user and system activity. 

• User Input Devices: Timing data from mouse 
movements and keystrokes serves as a source of 
entropy, especially during system startup or before 
sufficient entropy has accumulated. 

• Network Activity: Variations in network 
packet arrival times and traffic behavior contribute to 
randomness. 

• Disk Operations: Similar to network timing, 
read/write latencies on storage devices are used to 
extract additional entropy. 

This multi-source approach ensures that Windows 
can gather sufficient entropy across a wide range of 
operational contexts, including headless servers or 
unattended systems. 

Key RNG Components and APIs 

Windows exposes several components and interfaces 
for random number generation, targeted at both 
system-level functions and application developers: 

• SystemPrng: This is the core pseudorandom 
generator used internally by the Windows kernel. It is 
responsible for generating cryptographic-quality 
random data for system components and reseeding 
itself periodically to maintain security properties like 
forward and backward secrecy. 

• BCryptGenRandom(): The primary public-
facing API for developers to access random data. This 
function allows both user-mode and kernel-mode 
applications to retrieve cryptographically secure 
random bytes. It supports two modes: 

o Using the system-preferred RNG 
(BCRYPT_USE_SYSTEM_PREFERRED_RNG flag) 

o Specifying a custom algorithm provider (e.g., 
a hardware-based RNG) 

BCryptGenRandom() is widely adopted within the 
Windows ecosystem and is suitable for generating 
encryption keys, session tokens, nonces, salts, and 
other sensitive values. 

Security Measures and Reseeding 

Windows CNG is designed with strong security 
guarantees: 

• Forward Secrecy: If the RNG state is 
compromised at time t, it should not reveal any 
information about outputs generated before t. This is 
achieved by frequent reseeding with fresh entropy. 

• Backward Secrecy: If the RNG state is 
compromised at time t, it should not compromise 
outputs generated after t, as new entropy is injected 
periodically. 

• Self-Healing and Monitoring: The DRBG 
monitors entropy health and triggers reseeding or 
failure if entropy sources degrade. This helps defend 
against entropy starvation or deliberate 
manipulation. 

In summary, Windows provides a well-architected 
RNG system integrated with its cryptographic 
infrastructure. By combining hardware entropy, 
system noise, and strict adherence to NIST standards, 
it ensures a high degree of randomness suitable for 
secure computing. 

o RNG in Linux Systems 

Linux systems implement a well-structured and 
evolving architecture for random number generation 
that is integral to both system security and 
cryptographic operations [8-10]. The Linux RNG 
architecture is designed to collect entropy from 
diverse sources and deliver secure pseudorandom 
data to both kernel and user-space applications. Its 
design balances performance, reliability, and 
cryptographic strength. 

Architecture Overview 

The Linux kernel employs a dual-RNG interface, 
historically centered around two special device files: 
/dev/random and /dev/urandom. Each serves 
different purposes and has distinct behavior 
regarding entropy availability: 

• /dev/random: This interface is blocking, 
meaning it only returns data when sufficient entropy 
is available in the internal entropy pool. It is designed 
for applications that demand very high-quality 
randomness, such as key generation in cryptographic 
tools. 

• /dev/urandom: This interface is non-blocking 
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and returns random bytes even if the entropy pool is 
low. It uses a cryptographically secure pseudorandom 
number generator (CSPRNG) to stretch available 
entropy. While historically viewed as slightly less 
secure, modern cryptographic implementations have 
largely closed this gap. 

Starting from Linux kernel 5.6, the internal RNG has 
been upgraded to use a ChaCha20-based DRBG, 
replacing the older SHA-1 based algorithm. ChaCha20 
offers excellent performance and is resistant to 
known cryptanalytic attacks, making it a modern and 
efficient choice for both user and kernel applications. 

Entropy Collection 

Entropy in Linux is harvested from a wide array of 
system activities, which contribute to the internal 
entropy pool: 

• Interrupt Timings: The kernel records the 
precise timing of interrupts, which are naturally 
asynchronous and unpredictable, making them a 
good entropy source. 

• Keyboard and Mouse Events: User input 
events, such as keypress timings and mouse 
movements, are collected, especially during system 
boot or early startup. 

• Device Drivers: Many hardware drivers (e.g., 
disk I/O, network interfaces) provide timing 
information and low-level noise that is used to 
improve entropy quality. 

• Hardware RNGs: If present, hardware-based 
entropy sources (e.g., Intel’s RDRAND or AMD’s 
hardware RNGs) are integrated into the entropy pool. 
However, hardware entropy is typically mixed with 
software sources to reduce the risk of backdoors or 
biases. 

Entropy is tracked using an entropy estimation 
counter, and entropy is periodically extracted and 
stretched into longer pseudorandom streams using 
cryptographic algorithms like ChaCha20. 

Key APIs 

Linux provides several interfaces for accessing 
random numbers: 

• getrandom(): Introduced in Linux 3.17, 
getrandom() is the preferred modern system call for 
accessing secure random bytes directly from the 
kernel. It avoids file descriptor usage and provides 
both blocking and non-blocking options. It is the 
recommended choice for cryptographic applications 
and system-level security. 

• rand() and random(): These are standard C 
library functions but are not cryptographically secure. 
They are based on linear congruential generators 

(LCGs) and are considered insecure for any 
cryptographic purpose. Their use is strongly 
discouraged in security-sensitive contexts. 

• /dev/random and /dev/urandom: Still 
widely used in legacy and portable applications, these 
devices remain essential interfaces for backward 
compatibility and low-level operations. 

rngd Daemon and Hardware Integration 

To support hardware entropy devices and ensure 
proper mixing of entropy into the system RNG, Linux 
supports the rngd daemon (part of the rng-tools 
package). This daemon: 

• Reads entropy from hardware RNGs. 

• Validates and conditions the data (e.g., using 
FIPS 140-2 tests). 

• Injects high-quality entropy into the kernel’s 
entropy pool via /dev/random. 

This process ensures that hardware entropy so urces 
are not blindly trusted and that their output is 
carefully integrated into the system. 

o RNG in Apple’s macOS and iOS 

Apple’s operating systems—macOS and iOS—
implement a tightly integrated and hardware-
accelerated approach to random number generation, 
focusing on cryptographic security, performance, and 
compliance with industry standards. These RNG 
systems leverage a combination of system calls, 
hardware modules, and secure co-processors to 
generate high-quality entropy and cryptographically 
strong pseudorandom numbers [11]. 

Architecture Overview 

The primary interface for accessing secure 
randomness in Apple platforms is the 
SecRandomCopyBytes() function, part of the Security 
framework. This high-level API allows applications to 
request cryptographically secure random bytes 
without having to directly access lower-level 
interfaces or device files. 

Internally, SecRandomCopyBytes() interacts with 
system RNG components that may also access 
/dev/random. However, in contrast to Linux, these 
lower-level interfaces are not typically used directly 
by application developers on Apple platforms. 

Apple's architecture integrates RNG functionality 
deeply into both the kernel space and dedicated 
hardware modules, offering multiple layers of 
entropy sourcing and random data expansion. 

Entropy Sources 

Entropy in macOS and iOS is collected from both 
software-based system activity and dedicated 
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hardware components, including: 

• Apple Secure Enclave: A separate co-
processor with its own entropy source, random 
number generator, and secure execution 
environment. It is used extensively in cryptographic 
operations, including key management and 
encryption tasks. 

• Apple T2 Security Chip (on supported 
devices): Includes a hardware random number 
generator and cryptographic engine that enhances 
entropy generation and security. The T2 chip 
operates in isolation from the main CPU to prevent 
tampering and side-channel attacks. 

• System Events: Software-level entropy from 
device activity such as I/O timings, interrupts, and 
user interaction is also included. 

This multi-source entropy collection strategy ensures 
robust unpredictability and resistance to entropy 
starvation, especially during early boot or high-
demand periods. 

Cryptographic Expansion and DRBG Design 

Apple employs hardware-assisted DRBGs 
(Deterministic Random Bit Generators), which are 
likely compliant with NIST SP 800-90A standards [12-
18]. The following features characterize their DRBG 
implementations: 

• AES-based DRBG: For environments favoring 
FIPS compliance, Apple devices utilize AES in counter 
(CTR) mode to expand entropy into pseudorandom 
sequences. 

• ChaCha20-based Expansion: Newer Apple 
RNG implementations have incorporated ChaCha20, 
a stream cipher favored for its speed, security, and 
resistance to timing attacks. It is especially effective 
on mobile hardware and energy-efficient processors. 

• Periodic Reseeding: RNG instances in macOS 
and iOS are regularly reseeded with fresh entropy 
from hardware sources, preventing both forward and 
backward prediction of the output stream. 

• Sandbox Isolation: Access to the RNG APIs is 
sandboxed and restricted per application 
permissions. This security model reduces the risk of 
RNG misuse or unintended exposure of cryptographic 
operations. 

Security and Compliance 

Apple RNG systems are designed to meet high 
standards of cryptographic assurance and are 
integrated into secure workflows involving biometric 
authentication, file system encryption, and encrypted 
messaging. Notably: 

• The Secure Enclave maintains its own 
independent RNG to support Touch ID, Face ID, Apple 
Pay, and secure key storage. 

• Secure Boot and FileVault encryption 
routines utilize the RNG system during boot and disk 
decryption phases. 

• Reseeding mechanisms, along with high 
entropy availability, ensure resistance to entropy 
reuse and replay vulnerabilities. 

 
 

Table 1. Comparative Analysis. 

Feature Windows Linux macOS/iOS 

DRBG Type AES-CTR (CNG) ChaCha20 (since kernel 5.6) AES / ChaCha20 

Secure API 
BCryptGenRandom() 

getrandom(), 
/dev/urandom 

SecRandomCopyBytes() 

Hardware RNG 

Support 
RDRAND, TPM RDRAND, RNGd, TPM T2 chip, Secure Enclave 

Entropy Pool Internal pool managed by 

kernel 
Linux entropy pool Apple entropy manager 

Blocking API No /dev/random (blocking) No 

In Table 1, we present a comparative analysis of the 
random number generation mechanisms 
implemented across three major operating systems: 
Windows, Linux, and macOS/iOS. Each platform 
employs different deterministic random bit 
generators (DRBGs), entropy collection strategies, 
and APIs to provide secure randomness. Windows 
relies on the Cryptography API: Next Generation 
(CNG) framework, utilizing an AES-CTR-based DRBG 
that conforms to NIST SP 800-90A standards. Linux, 
on the other hand, transitioned to a ChaCha20-based 

DRBG in kernel version 5.6 and offers both blocking 
and non-blocking interfaces for random number 
access. macOS and iOS integrate hardware-assisted 
DRBGs, drawing entropy from dedicated hardware 
components like the Secure Enclave and T2 chip, and 
use both AES and ChaCha20 for expansion. All three 
operating systems support secure APIs for 
application-level randomness, although they differ in 
how they expose blocking behavior and manage 
entropy pools internally. This comparison highlights 
the diverse approaches taken by modern operating 
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systems to ensure cryptographic security through 
robust random number generation. 

CONCLUSIONS 

Random number generation is a foundational 
element in securing modern computing systems. 
From encryption and authentication to secure 
communications and digital signatures, the quality of 
randomness directly affects the integrity and 
confidentiality of data. As this survey has shown, 
Microsoft Windows, Linux, and Apple’s macOS/iOS 
each implement distinct yet robust RNG architectures 
to meet cryptographic needs. 

Windows relies on its CNG framework and AES-CTR 
DRBG with structured entropy inputs from hardware 
and system events. Linux adopts a dual-interface 
model with /dev/random, /dev/urandom, and 
getrandom(), using ChaCha20-based DRBGs and 
extensive kernel entropy sources. Apple platforms 
integrate RNG tightly with dedicated hardware such 
as the Secure Enclave and T2 chip, favoring both AES 
and ChaCha20 algorithms for high-assurance entropy 
expansion. 

Despite these differences, all major OSes emphasize 
several core principles: secure entropy collection, 
cryptographic expansion, periodic reseeding, and 
accessible APIs for developers. However, challenges 
remain—especially in early boot phases, embedded 
systems, and ensuring consistent entropy quality 
across heterogeneous hardware. 

As cryptographic threats evolve and attack vectors 
become more sophisticated, operating systems must 
continue advancing their RNG mechanisms. This 
includes integrating quantum-resistant algorithms, 
improving entropy validation, and ensuring 
transparency through third-party audits and open-
source contributions. Ultimately, the strength of any 
security system hinges on its foundation—and in 
cryptography, that foundation begins with 
randomness. 

REFERENCES 

Barker, E., & Kelsey, J. (2015). Recommendation for 
Random Number Generation Using Deterministic 
Random Bit Generators (Revised). NIST Special 
Publication 800-90A Rev. 1. 
https://doi.org/10.6028/NIST.SP.800-90Ar1  

Eastlake, D., Schiller, J., & Crocker, S. (2005). 
Randomness Requirements for Security. RFC 4086. 
https://www.rfc-editor.org/rfc/rfc4086  

Microsoft. (2023). Cryptography API: Next 
Generation. Microsoft Docs. 
https://learn.microsoft.com/en-
us/windows/win32/seccng/cng-portal  

Microsoft. (2023). BCryptGenRandom function 
(bcrypt.h). Microsoft Docs. 
https://learn.microsoft.com/en-
us/windows/win32/api/bcrypt/nf-bcrypt-
bcryptgenrandom  

Linux Kernel Documentation. (2023). Random 
Number Generator. 
https://www.kernel.org/doc/html/latest/admin-
guide/dev-random.html  

Linux man-pages project. (2023). getrandom(2) – 
Linux manual page. https://man7.org/linux/man-
pages/man2/getrandom.2.html  

Apple Developer Documentation. (2023). 
SecRandomCopyBytes. 
https://developer.apple.com/documentation/securit
y/1399291-secrandomcopybytes  

Apple. (2020). Platform Security Guide. 
https://support.apple.com/guide/security/welcome/
web  

Gutterman, Z., Pinkas, B., & Reinman, T. (2006). 
Analysis of the Linux Random Number Generator. 
IEEE Symposium on Security and Privacy. 
https://doi.org/10.1109/SP.2006.26  

Dorrendorf, L., Gutterman, Z., & Pinkas, B. (2007). 
Cryptanalysis of the Random Number Generator of 
the Windows Operating System. ACM CCS. 
https://doi.org/10.1145/1315245.1315274  

Lacharme, P. (2012). Security flaws in Linux's 
/dev/random. https://eprint.iacr.org/2012/251  

BSD Unix. (2022). arc4random and related APIs. 
https://man.openbsd.org/arc4random  

Kelsey, J., Schneier, B., Ferguson, N. (1999). Yarrow-
160: Notes on the Design and Analysis of the Yarrow 
Cryptographic Pseudorandom Number Generator. 
https://www.schneier.com/paper-yarrow.pdf  

Dodis, Y., et al. (2013). Security Analysis of 
Pseudorandom Number Generators with Input: 
/dev/random is not Robust. ACM CCS. 
https://doi.org/10.1145/2508859.2516661  

Intel Corporation. (2014). Intel® Digital Random 
Number Generator (DRNG) Software Implementation 
Guide. 
https://www.intel.com/content/www/us/en/conten
t-details/671488/intel-digital-random-number-
generator-drng-software-implementation-
guide.html  

National Institute of Standards and Technology. 
(2012). A Statistical Test Suite for Random and 
Pseudorandom Number Generators for 
Cryptographic Applications. NIST SP 800-22 Rev. 1a. 
https://doi.org/10.6028/NIST.SP.800-22r1a  

https://doi.org/10.6028/NIST.SP.800-90Ar1
https://doi.org/10.6028/NIST.SP.800-90Ar1
https://www.rfc-editor.org/rfc/rfc4086
https://www.rfc-editor.org/rfc/rfc4086
https://learn.microsoft.com/en-us/windows/win32/seccng/cng-portal
https://learn.microsoft.com/en-us/windows/win32/seccng/cng-portal
https://learn.microsoft.com/en-us/windows/win32/seccng/cng-portal
https://learn.microsoft.com/en-us/windows/win32/seccng/cng-portal
https://learn.microsoft.com/en-us/windows/win32/api/bcrypt/nf-bcrypt-bcryptgenrandom
https://learn.microsoft.com/en-us/windows/win32/api/bcrypt/nf-bcrypt-bcryptgenrandom
https://learn.microsoft.com/en-us/windows/win32/api/bcrypt/nf-bcrypt-bcryptgenrandom
https://learn.microsoft.com/en-us/windows/win32/api/bcrypt/nf-bcrypt-bcryptgenrandom
https://learn.microsoft.com/en-us/windows/win32/api/bcrypt/nf-bcrypt-bcryptgenrandom
https://learn.microsoft.com/en-us/windows/win32/api/bcrypt/nf-bcrypt-bcryptgenrandom
https://learn.microsoft.com/en-us/windows/win32/api/bcrypt/nf-bcrypt-bcryptgenrandom
https://learn.microsoft.com/en-us/windows/win32/api/bcrypt/nf-bcrypt-bcryptgenrandom
https://www.kernel.org/doc/html/latest/admin-guide/dev-random.html
https://www.kernel.org/doc/html/latest/admin-guide/dev-random.html
https://www.kernel.org/doc/html/latest/admin-guide/dev-random.html
https://www.kernel.org/doc/html/latest/admin-guide/dev-random.html
https://man7.org/linux/man-pages/man2/getrandom.2.html
https://man7.org/linux/man-pages/man2/getrandom.2.html
https://man7.org/linux/man-pages/man2/getrandom.2.html
https://man7.org/linux/man-pages/man2/getrandom.2.html
https://developer.apple.com/documentation/security/1399291-secrandomcopybytes
https://developer.apple.com/documentation/security/1399291-secrandomcopybytes
https://developer.apple.com/documentation/security/1399291-secrandomcopybytes
https://developer.apple.com/documentation/security/1399291-secrandomcopybytes
https://support.apple.com/guide/security/welcome/web
https://support.apple.com/guide/security/welcome/web
https://support.apple.com/guide/security/welcome/web
https://support.apple.com/guide/security/welcome/web
https://doi.org/10.1109/SP.2006.26
https://doi.org/10.1109/SP.2006.26
https://doi.org/10.1145/1315245.1315274
https://doi.org/10.1145/1315245.1315274
https://eprint.iacr.org/2012/251
https://eprint.iacr.org/2012/251
https://man.openbsd.org/arc4random
https://man.openbsd.org/arc4random
https://www.schneier.com/paper-yarrow.pdf
https://www.schneier.com/paper-yarrow.pdf
https://doi.org/10.1145/2508859.2516661
https://doi.org/10.1145/2508859.2516661
https://www.intel.com/content/www/us/en/content-details/671488/intel-digital-random-number-generator-drng-software-implementation-guide.html
https://www.intel.com/content/www/us/en/content-details/671488/intel-digital-random-number-generator-drng-software-implementation-guide.html
https://www.intel.com/content/www/us/en/content-details/671488/intel-digital-random-number-generator-drng-software-implementation-guide.html
https://www.intel.com/content/www/us/en/content-details/671488/intel-digital-random-number-generator-drng-software-implementation-guide.html
https://www.intel.com/content/www/us/en/content-details/671488/intel-digital-random-number-generator-drng-software-implementation-guide.html
https://www.intel.com/content/www/us/en/content-details/671488/intel-digital-random-number-generator-drng-software-implementation-guide.html
https://www.intel.com/content/www/us/en/content-details/671488/intel-digital-random-number-generator-drng-software-implementation-guide.html
https://www.intel.com/content/www/us/en/content-details/671488/intel-digital-random-number-generator-drng-software-implementation-guide.html
https://doi.org/10.6028/NIST.SP.800-22r1a
https://doi.org/10.6028/NIST.SP.800-22r1a


American Journal of Applied Science and Technology 81 https://theusajournals.com/index.php/ajast 

American Journal of Applied Science and Technology (ISSN: 2771-2745) 
 

 

Müller, T. (2013). Security of the OpenSSL PRNG. 
International Journal of Information Security, 12(4), 
251–265. https://doi.org/10.1007/s10207-013-0213-
7  

Debian Security Advisory. (2008). Debian OpenSSL 
Predictable PRNG Vulnerability (DSA-1571). 
https://www.debian.org/security/2008/dsa-1571   

  
 

https://doi.org/10.1007/s10207-013-0213-7
https://doi.org/10.1007/s10207-013-0213-7
https://doi.org/10.1007/s10207-013-0213-7
https://doi.org/10.1007/s10207-013-0213-7
https://www.debian.org/security/2008/dsa-1571
https://www.debian.org/security/2008/dsa-1571
https://www.debian.org/security/2008/dsa-1571

