
American Journal of Applied Science and Technology 74 https://theusajournals.com/index.php/ajast

 VOLUME Vol.05 Issue 05 2025

PAGE NO. 74-81

DOI 10.37547/ajast/Volume05Issue05-17

Random Number Generation in Operating Systems

Karimov Madjit Malikovich

Agency for Assessment of knowledge and competences under the ministry of Higher Education, Science and Innovation of the Republic

of Uzbekistan, Tashkent, Uzbekistan

Komil Tashev

Department of Cryptology, Tashkent University of Information Technologies named after Muhammad al-Khwarizmi, Tashkent,

Uzbekistan

Nuriddin Safoev

Tashkent University of Information Technologies named after Muhammad al-Khwarizmi, Tashkent, Uzbekistan

Tashmatova Shaxnoza Sabirovna

Tashkent State Technical University named after Islam Karimov, Tashkent, Uzbekistan

Qurbonova Kabira Erkinovna

Tashkent State Technical University named after Islam Karimov, Tashkent, Uzbekistan

Fayziraxmonov Boburjon Baxtiyorjon o‘g‘li

Tashkent University of Information Technologies named after Muhammad al-Khwarizmi, Tashkent, Uzbekistan

Received: 23 March 2025; Accepted: 19 April 2025; Published: 21 May 2025

Abstract: Random number generation (RNG) plays a foundational role in security, cryptography, and system design.
Operating systems today implement complex mechanisms for generating random numbers securely. This survey
paper presents an overview of RNG techniques used in major operating systems, including Microsoft Windows,
Linux, and macOS. We examine entropy sources, deterministic random bit generators (DRBGs), system APIs, and
quality testing mechanisms. The survey highlights key differences between OS-level RNG designs and emphasizes
best practices, challenges, and potential vulnerabilities. This work aims to serve as a reference for students,
developers, and security professionals seeking a comparative understanding of secure randomness in computing
environments.

Keywords: Random Number Generation, Operating Systems, Entropy, DRBG, Cryptography, RNG APIs, Windows,
Linux, macOS.

Introduction:

Random numbers are fundamental to numerous
areas of computing, including simulations, gaming,
randomized algorithms, and, most critically, security
and cryptography. In this context, randomness is not
merely a matter of variability; it is a foundational
element that underpins the unpredictability and

strength of cryptographic operations. Secure
cryptographic systems rely on high-quality random
numbers to ensure that data remains confidential,
integrity is preserved, and attackers are unable to
predict or reproduce security-critical values [1].

The principle “randomness equals security” is

https://doi.org/10.37547/ajast/Volume05Issue05-17
https://doi.org/10.37547/ajast/Volume05Issue05-17
https://doi.org/10.37547/ajast/Volume05Issue05-17
https://doi.org/10.37547/ajast/Volume05Issue05-17

American Journal of Applied Science and Technology 75 https://theusajournals.com/index.php/ajast

American Journal of Applied Science and Technology (ISSN: 2771-2745)

especially true in cryptography, where various
components are designed to be resistant to analysis
and guessing [2]. For instance:

• Encryption Keys are generated using random
data to ensure that no two keys are alike and that
adversaries cannot derive them through any logical
pattern. Predictable keys compromise the
confidentiality of encrypted information.

• Nonces (numbers used once) are used in
encryption schemes and secure communications to
guarantee uniqueness across operations. If reused or
predictable, they can enable replay attacks or
compromise the integrity of secure channels.

• Salts are random values added to passwords
before hashing to defend against precomputed
attacks such as rainbow tables. Without salts,
attackers could reverse-engineer hash values using
known dictionaries of common passwords.

• Secure Tokens, used in session management
and password resets, must be generated with high
entropy to prevent session hijacking or unauthorized
access through token prediction.

When randomness is weak or flawed, the entire
security architecture becomes vulnerable. This has
real-world implications: adversaries may be able to
guess cryptographic keys, reproduce secure tokens,
or even impersonate users in encrypted sessions [3].
The need for robust and unpredictable random
numbers is therefore non-negotiable in the design of
secure systems.

Major security protocols such as:

• TLS (Transport Layer Security), which secures
web traffic (e.g., HTTPS)

• VPNs (Virtual Private Networks), which
encrypt internet communication

• Digital Signatures, which verify the
authenticity and integrity of data

all critically rely on random number generation to
protect against attacks. In these protocols,
randomness is used during key exchange, digital
signature generation, and session establishment. For
example, the TLS handshake process involves the
exchange of random values to derive session keys. If
these values can be guessed, an attacker could
decrypt the supposedly secure communication.

To fulfill this essential role, modern operating systems
(OSes) such as Microsoft Windows, Linux, and macOS
embed RNGs at the core of their architecture. These
RNGs are designed to gather entropy from a variety
of unpredictable system-level sources, such as:

• User input events (e.g., keyboard and mouse

movements)

• Timing variations in hardware activity (e.g.,
disk access or network latency)

• Hardware-based noise generators (e.g.,
Intel's RDRAND or TPM modules)

This entropy is then processed using
cryptographically secure algorithms like AES in
Counter (CTR) mode, ChaCha20, or SHA-based
constructions, which expand limited entropy into
large streams of high-quality pseudorandom bits.

To ensure ease of use and standardization, operating
systems expose APIs through which applications and
developers can request random data. These APIs
ensure that developers do not need to implement
their own randomness logic—a task prone to critical
errors [4]. For instance, Windows provides
BCryptGenRandom as part of its Cryptography API:
Next Generation (CNG); Linux offers /dev/random,
/dev/urandom, and the getrandom() syscall; macOS
includes functions such as arc4random() and
SecRandomCopyBytes().

While the core objective of these RNGs is consistent
across platforms—to provide secure, high-quality
randomness—their architectural designs and
cryptographic strategies vary significantly, influenced
by:

• Platform Architecture: Windows uses the
CNG framework, Linux relies on device files and
syscalls, and macOS integrates RNGs into system
libraries like libSystem.

• Entropy Collection Strategies: Some
platforms aggressively incorporate entropy from
hardware RNGs, while others depend more heavily on
event-based or software sources.

• Deterministic Random Bit Generator (DRBG)
Standards: Many RNG implementations conform to
NIST SP 800-90A standards, which define DRBGs
based on AES, SHA-256, or HMAC constructions.
However, some modern systems adopt stream
ciphers like ChaCha20 for improved speed and
security, particularly on resource-constrained or
mobile platforms.

This paper surveys the design and implementation of
random number generation in major operating
systems, highlighting the architectural differences,
entropy-handling mechanisms, DRBG standards, and
APIs used to facilitate secure randomness. By
analyzing these systems, we aim to identify best
practices, potential weaknesses, and future
directions for enhancing randomness in computing
platforms.

Background and Importance

American Journal of Applied Science and Technology 76 https://theusajournals.com/index.php/ajast

American Journal of Applied Science and Technology (ISSN: 2771-2745)

Random number generation (RNG) plays a
foundational role in modern computing, especially in
the field of cryptography, where the security of many
algorithms and protocols hinges on the quality of
randomness. Random numbers are crucial for
generating encryption keys, initialization vectors,
nonces, salts, secure session identifiers, and digital
signatures. As such, the strength of encryption and
the robustness of many security mechanisms are
directly tied to the unpredictability and entropy of the
underlying random number generation processes. An
insecure RNG can lead to predictable outputs that
undermine the entire security model of cryptographic
systems [5].

The dangers of flawed RNGs have been demonstrated
by real-world security incidents. One of the most
notable examples is the Debian OpenSSL vulnerability
that occurred between 2006 and 2008. In this case, a
Debian developer mistakenly removed critical
entropy-gathering code from the OpenSSL package,
significantly weakening the randomness used to
generate cryptographic keys. As a result, the affected
systems produced a very limited number of possible
keys—only 32,768 variations—making them highly
susceptible to brute-force attacks. This vulnerability
had far-reaching consequences, affecting SSH keys,
SSL certificates, and other cryptographic elements
across thousands of systems. It forced administrators
worldwide to regenerate keys and re-secure their
infrastructures, underscoring the catastrophic
implications of insecure RNG implementations.

To prevent such failures, modern operating systems
and cryptographic libraries incorporate robust RNG
designs composed of several interdependent
components [6]. These typically include:

• Entropy Sources: These are raw,
unpredictable inputs collected from system behavior
or dedicated hardware. Examples include timing
variations in keystrokes, mouse movements, disk I/O
latencies, and hardware-based noise generators (e.g.,
Intel's RDRAND, AMD’s RdSeed, or physical entropy
devices like TPMs and HWRNGs). The quality of these
sources is essential, as they form the basis of the
system’s randomness.

• Entropy Pool: This is a system-managed
structure that aggregates the entropy gathered from
various sources. The pool acts as a buffer, storing
collected randomness until there is enough to
securely seed a deterministic generator. Some
systems maintain multiple pools for different
purposes, and entropy accounting mechanisms are
used to estimate how much unpredictability has been
accumulated. For example, Linux uses separate pools

for /dev/random and /dev/urandom, with blocking
behavior depending on entropy availability.

• Pseudorandom Number Generators (PRGs)
or Deterministic Random Bit Generators (DRBGs):
These are cryptographic algorithms designed to
expand a limited amount of high-quality entropy into
a long stream of random bits. Once seeded, these
generators can rapidly produce large amounts of
pseudorandom data. Common DRBGs are based on
algorithms such as AES in counter mode (AES-CTR
DRBG), HMAC constructions (HMAC DRBG), and
secure hash functions (Hash DRBG). More recently,
stream ciphers like ChaCha20 have also been adopted
in RNG designs for both speed and security. These
generators are typically compliant with NIST Special
Publication 800-90A/B/C standards and are regularly
reviewed for cryptographic soundness.

• Application Programming Interfaces (APIs):
To ensure usability and consistency, operating
systems provide standardized APIs for developers to
access random data. These APIs abstract away the
internal complexity and guarantee secure outputs if
used correctly. For example, Windows offers
interfaces like BCryptGenRandom and
RtlGenRandom; Linux exposes randomness through
devices such as /dev/random, /dev/urandom, and the
getrandom() syscall; macOS provides interfaces like
SecRandomCopyBytes and arc4random(). The proper
use of these APIs is essential, as bypassing them or
misusing insecure alternatives (such as using non-
cryptographic RNGs like rand() or srand() in C) can
introduce subtle but dangerous vulnerabilities.

Overall, the integrity of random number generation
systems is a critical pillar of digital security. A failure
at this level can result in broken encryption,
impersonation attacks, token prediction, or
unauthorized data access. Hence, RNGs must be
implemented, audited, and maintained with the
highest standards of cryptographic rigor. As threats
evolve and new vulnerabilities are discovered,
operating system vendors continue to enhance the
design and performance of their RNG subsystems,
ensuring that the cryptographic primitives depending
on them remain robust and trustworthy.

Random Number Generation in Operating Systems

o RNG in Microsoft Windows

Microsoft Windows employs a robust cryptographic
framework known as Cryptography API: Next
Generation (CNG) to handle cryptographic services,
including random number generation. At the core of
Windows' RNG system lies an implementation of a
Deterministic Random Bit Generator (DRBG) based on
the AES block cipher in Counter (CTR) mode, which is

American Journal of Applied Science and Technology 77 https://theusajournals.com/index.php/ajast

American Journal of Applied Science and Technology (ISSN: 2771-2745)

compliant with the NIST SP 800-90A standard. This
ensures both compliance with federal cryptographic
guidelines and a high level of cryptographic strength
suitable for secure communications and system-level
operations [7].

Entropy Sources

Windows collects entropy from multiple hardware
and software sources to populate its internal entropy
pool. The diversity of these sources helps enhance the
unpredictability and resistance against entropy
exhaustion or manipulation:

• Hardware Random Number Generators
(HRNGs): Windows utilizes hardware RNGs when
available, such as Intel’s RDRAND instruction, which
provides high-speed, hardware-generated entropy.

• Timing of System Events: The system records
time variations in low-level events, such as interrupts
and system calls, to capture unpredictability arising
from user and system activity.

• User Input Devices: Timing data from mouse
movements and keystrokes serves as a source of
entropy, especially during system startup or before
sufficient entropy has accumulated.

• Network Activity: Variations in network
packet arrival times and traffic behavior contribute to
randomness.

• Disk Operations: Similar to network timing,
read/write latencies on storage devices are used to
extract additional entropy.

This multi-source approach ensures that Windows
can gather sufficient entropy across a wide range of
operational contexts, including headless servers or
unattended systems.

Key RNG Components and APIs

Windows exposes several components and interfaces
for random number generation, targeted at both
system-level functions and application developers:

• SystemPrng: This is the core pseudorandom
generator used internally by the Windows kernel. It is
responsible for generating cryptographic-quality
random data for system components and reseeding
itself periodically to maintain security properties like
forward and backward secrecy.

• BCryptGenRandom(): The primary public-
facing API for developers to access random data. This
function allows both user-mode and kernel-mode
applications to retrieve cryptographically secure
random bytes. It supports two modes:

o Using the system-preferred RNG
(BCRYPT_USE_SYSTEM_PREFERRED_RNG flag)

o Specifying a custom algorithm provider (e.g.,
a hardware-based RNG)

BCryptGenRandom() is widely adopted within the
Windows ecosystem and is suitable for generating
encryption keys, session tokens, nonces, salts, and
other sensitive values.

Security Measures and Reseeding

Windows CNG is designed with strong security
guarantees:

• Forward Secrecy: If the RNG state is
compromised at time t, it should not reveal any
information about outputs generated before t. This is
achieved by frequent reseeding with fresh entropy.

• Backward Secrecy: If the RNG state is
compromised at time t, it should not compromise
outputs generated after t, as new entropy is injected
periodically.

• Self-Healing and Monitoring: The DRBG
monitors entropy health and triggers reseeding or
failure if entropy sources degrade. This helps defend
against entropy starvation or deliberate
manipulation.

In summary, Windows provides a well-architected
RNG system integrated with its cryptographic
infrastructure. By combining hardware entropy,
system noise, and strict adherence to NIST standards,
it ensures a high degree of randomness suitable for
secure computing.

o RNG in Linux Systems

Linux systems implement a well-structured and
evolving architecture for random number generation
that is integral to both system security and
cryptographic operations [8-10]. The Linux RNG
architecture is designed to collect entropy from
diverse sources and deliver secure pseudorandom
data to both kernel and user-space applications. Its
design balances performance, reliability, and
cryptographic strength.

Architecture Overview

The Linux kernel employs a dual-RNG interface,
historically centered around two special device files:
/dev/random and /dev/urandom. Each serves
different purposes and has distinct behavior
regarding entropy availability:

• /dev/random: This interface is blocking,
meaning it only returns data when sufficient entropy
is available in the internal entropy pool. It is designed
for applications that demand very high-quality
randomness, such as key generation in cryptographic
tools.

• /dev/urandom: This interface is non-blocking

American Journal of Applied Science and Technology 78 https://theusajournals.com/index.php/ajast

American Journal of Applied Science and Technology (ISSN: 2771-2745)

and returns random bytes even if the entropy pool is
low. It uses a cryptographically secure pseudorandom
number generator (CSPRNG) to stretch available
entropy. While historically viewed as slightly less
secure, modern cryptographic implementations have
largely closed this gap.

Starting from Linux kernel 5.6, the internal RNG has
been upgraded to use a ChaCha20-based DRBG,
replacing the older SHA-1 based algorithm. ChaCha20
offers excellent performance and is resistant to
known cryptanalytic attacks, making it a modern and
efficient choice for both user and kernel applications.

Entropy Collection

Entropy in Linux is harvested from a wide array of
system activities, which contribute to the internal
entropy pool:

• Interrupt Timings: The kernel records the
precise timing of interrupts, which are naturally
asynchronous and unpredictable, making them a
good entropy source.

• Keyboard and Mouse Events: User input
events, such as keypress timings and mouse
movements, are collected, especially during system
boot or early startup.

• Device Drivers: Many hardware drivers (e.g.,
disk I/O, network interfaces) provide timing
information and low-level noise that is used to
improve entropy quality.

• Hardware RNGs: If present, hardware-based
entropy sources (e.g., Intel’s RDRAND or AMD’s
hardware RNGs) are integrated into the entropy pool.
However, hardware entropy is typically mixed with
software sources to reduce the risk of backdoors or
biases.

Entropy is tracked using an entropy estimation
counter, and entropy is periodically extracted and
stretched into longer pseudorandom streams using
cryptographic algorithms like ChaCha20.

Key APIs

Linux provides several interfaces for accessing
random numbers:

• getrandom(): Introduced in Linux 3.17,
getrandom() is the preferred modern system call for
accessing secure random bytes directly from the
kernel. It avoids file descriptor usage and provides
both blocking and non-blocking options. It is the
recommended choice for cryptographic applications
and system-level security.

• rand() and random(): These are standard C
library functions but are not cryptographically secure.
They are based on linear congruential generators

(LCGs) and are considered insecure for any
cryptographic purpose. Their use is strongly
discouraged in security-sensitive contexts.

• /dev/random and /dev/urandom: Still
widely used in legacy and portable applications, these
devices remain essential interfaces for backward
compatibility and low-level operations.

rngd Daemon and Hardware Integration

To support hardware entropy devices and ensure
proper mixing of entropy into the system RNG, Linux
supports the rngd daemon (part of the rng-tools
package). This daemon:

• Reads entropy from hardware RNGs.

• Validates and conditions the data (e.g., using
FIPS 140-2 tests).

• Injects high-quality entropy into the kernel’s
entropy pool via /dev/random.

This process ensures that hardware entropy so urces
are not blindly trusted and that their output is
carefully integrated into the system.

o RNG in Apple’s macOS and iOS

Apple’s operating systems—macOS and iOS—
implement a tightly integrated and hardware-
accelerated approach to random number generation,
focusing on cryptographic security, performance, and
compliance with industry standards. These RNG
systems leverage a combination of system calls,
hardware modules, and secure co-processors to
generate high-quality entropy and cryptographically
strong pseudorandom numbers [11].

Architecture Overview

The primary interface for accessing secure
randomness in Apple platforms is the
SecRandomCopyBytes() function, part of the Security
framework. This high-level API allows applications to
request cryptographically secure random bytes
without having to directly access lower-level
interfaces or device files.

Internally, SecRandomCopyBytes() interacts with
system RNG components that may also access
/dev/random. However, in contrast to Linux, these
lower-level interfaces are not typically used directly
by application developers on Apple platforms.

Apple's architecture integrates RNG functionality
deeply into both the kernel space and dedicated
hardware modules, offering multiple layers of
entropy sourcing and random data expansion.

Entropy Sources

Entropy in macOS and iOS is collected from both
software-based system activity and dedicated

American Journal of Applied Science and Technology 79 https://theusajournals.com/index.php/ajast

American Journal of Applied Science and Technology (ISSN: 2771-2745)

hardware components, including:

• Apple Secure Enclave: A separate co-
processor with its own entropy source, random
number generator, and secure execution
environment. It is used extensively in cryptographic
operations, including key management and
encryption tasks.

• Apple T2 Security Chip (on supported
devices): Includes a hardware random number
generator and cryptographic engine that enhances
entropy generation and security. The T2 chip
operates in isolation from the main CPU to prevent
tampering and side-channel attacks.

• System Events: Software-level entropy from
device activity such as I/O timings, interrupts, and
user interaction is also included.

This multi-source entropy collection strategy ensures
robust unpredictability and resistance to entropy
starvation, especially during early boot or high-
demand periods.

Cryptographic Expansion and DRBG Design

Apple employs hardware-assisted DRBGs
(Deterministic Random Bit Generators), which are
likely compliant with NIST SP 800-90A standards [12-
18]. The following features characterize their DRBG
implementations:

• AES-based DRBG: For environments favoring
FIPS compliance, Apple devices utilize AES in counter
(CTR) mode to expand entropy into pseudorandom
sequences.

• ChaCha20-based Expansion: Newer Apple
RNG implementations have incorporated ChaCha20,
a stream cipher favored for its speed, security, and
resistance to timing attacks. It is especially effective
on mobile hardware and energy-efficient processors.

• Periodic Reseeding: RNG instances in macOS
and iOS are regularly reseeded with fresh entropy
from hardware sources, preventing both forward and
backward prediction of the output stream.

• Sandbox Isolation: Access to the RNG APIs is
sandboxed and restricted per application
permissions. This security model reduces the risk of
RNG misuse or unintended exposure of cryptographic
operations.

Security and Compliance

Apple RNG systems are designed to meet high
standards of cryptographic assurance and are
integrated into secure workflows involving biometric
authentication, file system encryption, and encrypted
messaging. Notably:

• The Secure Enclave maintains its own
independent RNG to support Touch ID, Face ID, Apple
Pay, and secure key storage.

• Secure Boot and FileVault encryption
routines utilize the RNG system during boot and disk
decryption phases.

• Reseeding mechanisms, along with high
entropy availability, ensure resistance to entropy
reuse and replay vulnerabilities.

Table 1. Comparative Analysis.

Feature Windows Linux macOS/iOS

DRBG Type AES-CTR (CNG) ChaCha20 (since kernel 5.6) AES / ChaCha20

Secure API
BCryptGenRandom()

getrandom(),
/dev/urandom

SecRandomCopyBytes()

Hardware RNG

Support
RDRAND, TPM RDRAND, RNGd, TPM T2 chip, Secure Enclave

Entropy Pool Internal pool managed by

kernel
Linux entropy pool Apple entropy manager

Blocking API No /dev/random (blocking) No

In Table 1, we present a comparative analysis of the
random number generation mechanisms
implemented across three major operating systems:
Windows, Linux, and macOS/iOS. Each platform
employs different deterministic random bit
generators (DRBGs), entropy collection strategies,
and APIs to provide secure randomness. Windows
relies on the Cryptography API: Next Generation
(CNG) framework, utilizing an AES-CTR-based DRBG
that conforms to NIST SP 800-90A standards. Linux,
on the other hand, transitioned to a ChaCha20-based

DRBG in kernel version 5.6 and offers both blocking
and non-blocking interfaces for random number
access. macOS and iOS integrate hardware-assisted
DRBGs, drawing entropy from dedicated hardware
components like the Secure Enclave and T2 chip, and
use both AES and ChaCha20 for expansion. All three
operating systems support secure APIs for
application-level randomness, although they differ in
how they expose blocking behavior and manage
entropy pools internally. This comparison highlights
the diverse approaches taken by modern operating

American Journal of Applied Science and Technology 80 https://theusajournals.com/index.php/ajast

American Journal of Applied Science and Technology (ISSN: 2771-2745)

systems to ensure cryptographic security through
robust random number generation.

CONCLUSIONS

Random number generation is a foundational
element in securing modern computing systems.
From encryption and authentication to secure
communications and digital signatures, the quality of
randomness directly affects the integrity and
confidentiality of data. As this survey has shown,
Microsoft Windows, Linux, and Apple’s macOS/iOS
each implement distinct yet robust RNG architectures
to meet cryptographic needs.

Windows relies on its CNG framework and AES-CTR
DRBG with structured entropy inputs from hardware
and system events. Linux adopts a dual-interface
model with /dev/random, /dev/urandom, and
getrandom(), using ChaCha20-based DRBGs and
extensive kernel entropy sources. Apple platforms
integrate RNG tightly with dedicated hardware such
as the Secure Enclave and T2 chip, favoring both AES
and ChaCha20 algorithms for high-assurance entropy
expansion.

Despite these differences, all major OSes emphasize
several core principles: secure entropy collection,
cryptographic expansion, periodic reseeding, and
accessible APIs for developers. However, challenges
remain—especially in early boot phases, embedded
systems, and ensuring consistent entropy quality
across heterogeneous hardware.

As cryptographic threats evolve and attack vectors
become more sophisticated, operating systems must
continue advancing their RNG mechanisms. This
includes integrating quantum-resistant algorithms,
improving entropy validation, and ensuring
transparency through third-party audits and open-
source contributions. Ultimately, the strength of any
security system hinges on its foundation—and in
cryptography, that foundation begins with
randomness.

REFERENCES

Barker, E., & Kelsey, J. (2015). Recommendation for
Random Number Generation Using Deterministic
Random Bit Generators (Revised). NIST Special
Publication 800-90A Rev. 1.
https://doi.org/10.6028/NIST.SP.800-90Ar1

Eastlake, D., Schiller, J., & Crocker, S. (2005).
Randomness Requirements for Security. RFC 4086.
https://www.rfc-editor.org/rfc/rfc4086

Microsoft. (2023). Cryptography API: Next
Generation. Microsoft Docs.
https://learn.microsoft.com/en-
us/windows/win32/seccng/cng-portal

Microsoft. (2023). BCryptGenRandom function
(bcrypt.h). Microsoft Docs.
https://learn.microsoft.com/en-
us/windows/win32/api/bcrypt/nf-bcrypt-
bcryptgenrandom

Linux Kernel Documentation. (2023). Random
Number Generator.
https://www.kernel.org/doc/html/latest/admin-
guide/dev-random.html

Linux man-pages project. (2023). getrandom(2) –
Linux manual page. https://man7.org/linux/man-
pages/man2/getrandom.2.html

Apple Developer Documentation. (2023).
SecRandomCopyBytes.
https://developer.apple.com/documentation/securit
y/1399291-secrandomcopybytes

Apple. (2020). Platform Security Guide.
https://support.apple.com/guide/security/welcome/
web

Gutterman, Z., Pinkas, B., & Reinman, T. (2006).
Analysis of the Linux Random Number Generator.
IEEE Symposium on Security and Privacy.
https://doi.org/10.1109/SP.2006.26

Dorrendorf, L., Gutterman, Z., & Pinkas, B. (2007).
Cryptanalysis of the Random Number Generator of
the Windows Operating System. ACM CCS.
https://doi.org/10.1145/1315245.1315274

Lacharme, P. (2012). Security flaws in Linux's
/dev/random. https://eprint.iacr.org/2012/251

BSD Unix. (2022). arc4random and related APIs.
https://man.openbsd.org/arc4random

Kelsey, J., Schneier, B., Ferguson, N. (1999). Yarrow-
160: Notes on the Design and Analysis of the Yarrow
Cryptographic Pseudorandom Number Generator.
https://www.schneier.com/paper-yarrow.pdf

Dodis, Y., et al. (2013). Security Analysis of
Pseudorandom Number Generators with Input:
/dev/random is not Robust. ACM CCS.
https://doi.org/10.1145/2508859.2516661

Intel Corporation. (2014). Intel® Digital Random
Number Generator (DRNG) Software Implementation
Guide.
https://www.intel.com/content/www/us/en/conten
t-details/671488/intel-digital-random-number-
generator-drng-software-implementation-
guide.html

National Institute of Standards and Technology.
(2012). A Statistical Test Suite for Random and
Pseudorandom Number Generators for
Cryptographic Applications. NIST SP 800-22 Rev. 1a.
https://doi.org/10.6028/NIST.SP.800-22r1a

https://doi.org/10.6028/NIST.SP.800-90Ar1
https://doi.org/10.6028/NIST.SP.800-90Ar1
https://www.rfc-editor.org/rfc/rfc4086
https://www.rfc-editor.org/rfc/rfc4086
https://learn.microsoft.com/en-us/windows/win32/seccng/cng-portal
https://learn.microsoft.com/en-us/windows/win32/seccng/cng-portal
https://learn.microsoft.com/en-us/windows/win32/seccng/cng-portal
https://learn.microsoft.com/en-us/windows/win32/seccng/cng-portal
https://learn.microsoft.com/en-us/windows/win32/api/bcrypt/nf-bcrypt-bcryptgenrandom
https://learn.microsoft.com/en-us/windows/win32/api/bcrypt/nf-bcrypt-bcryptgenrandom
https://learn.microsoft.com/en-us/windows/win32/api/bcrypt/nf-bcrypt-bcryptgenrandom
https://learn.microsoft.com/en-us/windows/win32/api/bcrypt/nf-bcrypt-bcryptgenrandom
https://learn.microsoft.com/en-us/windows/win32/api/bcrypt/nf-bcrypt-bcryptgenrandom
https://learn.microsoft.com/en-us/windows/win32/api/bcrypt/nf-bcrypt-bcryptgenrandom
https://learn.microsoft.com/en-us/windows/win32/api/bcrypt/nf-bcrypt-bcryptgenrandom
https://learn.microsoft.com/en-us/windows/win32/api/bcrypt/nf-bcrypt-bcryptgenrandom
https://www.kernel.org/doc/html/latest/admin-guide/dev-random.html
https://www.kernel.org/doc/html/latest/admin-guide/dev-random.html
https://www.kernel.org/doc/html/latest/admin-guide/dev-random.html
https://www.kernel.org/doc/html/latest/admin-guide/dev-random.html
https://man7.org/linux/man-pages/man2/getrandom.2.html
https://man7.org/linux/man-pages/man2/getrandom.2.html
https://man7.org/linux/man-pages/man2/getrandom.2.html
https://man7.org/linux/man-pages/man2/getrandom.2.html
https://developer.apple.com/documentation/security/1399291-secrandomcopybytes
https://developer.apple.com/documentation/security/1399291-secrandomcopybytes
https://developer.apple.com/documentation/security/1399291-secrandomcopybytes
https://developer.apple.com/documentation/security/1399291-secrandomcopybytes
https://support.apple.com/guide/security/welcome/web
https://support.apple.com/guide/security/welcome/web
https://support.apple.com/guide/security/welcome/web
https://support.apple.com/guide/security/welcome/web
https://doi.org/10.1109/SP.2006.26
https://doi.org/10.1109/SP.2006.26
https://doi.org/10.1145/1315245.1315274
https://doi.org/10.1145/1315245.1315274
https://eprint.iacr.org/2012/251
https://eprint.iacr.org/2012/251
https://man.openbsd.org/arc4random
https://man.openbsd.org/arc4random
https://www.schneier.com/paper-yarrow.pdf
https://www.schneier.com/paper-yarrow.pdf
https://doi.org/10.1145/2508859.2516661
https://doi.org/10.1145/2508859.2516661
https://www.intel.com/content/www/us/en/content-details/671488/intel-digital-random-number-generator-drng-software-implementation-guide.html
https://www.intel.com/content/www/us/en/content-details/671488/intel-digital-random-number-generator-drng-software-implementation-guide.html
https://www.intel.com/content/www/us/en/content-details/671488/intel-digital-random-number-generator-drng-software-implementation-guide.html
https://www.intel.com/content/www/us/en/content-details/671488/intel-digital-random-number-generator-drng-software-implementation-guide.html
https://www.intel.com/content/www/us/en/content-details/671488/intel-digital-random-number-generator-drng-software-implementation-guide.html
https://www.intel.com/content/www/us/en/content-details/671488/intel-digital-random-number-generator-drng-software-implementation-guide.html
https://www.intel.com/content/www/us/en/content-details/671488/intel-digital-random-number-generator-drng-software-implementation-guide.html
https://www.intel.com/content/www/us/en/content-details/671488/intel-digital-random-number-generator-drng-software-implementation-guide.html
https://doi.org/10.6028/NIST.SP.800-22r1a
https://doi.org/10.6028/NIST.SP.800-22r1a

American Journal of Applied Science and Technology 81 https://theusajournals.com/index.php/ajast

American Journal of Applied Science and Technology (ISSN: 2771-2745)

Müller, T. (2013). Security of the OpenSSL PRNG.
International Journal of Information Security, 12(4),
251–265. https://doi.org/10.1007/s10207-013-0213-
7

Debian Security Advisory. (2008). Debian OpenSSL
Predictable PRNG Vulnerability (DSA-1571).
https://www.debian.org/security/2008/dsa-1571

https://doi.org/10.1007/s10207-013-0213-7
https://doi.org/10.1007/s10207-013-0213-7
https://doi.org/10.1007/s10207-013-0213-7
https://doi.org/10.1007/s10207-013-0213-7
https://www.debian.org/security/2008/dsa-1571
https://www.debian.org/security/2008/dsa-1571
https://www.debian.org/security/2008/dsa-1571

