
American Journal of Applied Science and Technology 70 https://theusajournals.com/index.php/ajast

 VOLUME Vol.05 Issue 05 2025

PAGE NO. 70-73

DOI 10.37547/ajast/Volume05Issue05-16

Random and Pseudo-Random Number Generation

Methods

Karimov Madjit Malikovich

Agency for Assessment of knowledge and competences under the ministry of Higher Education, Science and Innovation of the Republic

of Uzbekistan, Tashkent, Uzbekistan

Komil Tashev

Department of Cryptology, Tashkent University of Information Technologies named after Muhammad al-Khwarizmi, Tashkent,

Uzbekistan

Nuriddin Safoev

Tashkent University of Information Technologies named after Muhammad al-Khwarizmi, Tashkent, Uzbekistan

Tashmatova Shaxnoza Sabirovna

Tashkent State Technical University named after Islam Karimov, Tashkent, Uzbekistan

Qurbonova Kabira Erkinovna

Tashkent State Technical University named after Islam Karimov, Tashkent, Uzbekistan

Fayziraxmonov Boburjon Baxtiyorjon o‘g‘li

Tashkent University of Information Technologies named after Muhammad al-Khwarizmi, Tashkent, Uzbekistan

Received: 23 March 2025; Accepted: 19 April 2025; Published: 21 May 2025

Abstract: Random number generation is a fundamental aspect of computer science, cryptography, simulations, and
statistical sampling. This paper explores the definitions, classifications, and implementations of random and
pseudo-random number generators (RNGs and PRNGs). We examine true random number generators (TRNGs),
which derive randomness from physical phenomena, and pseudo-random number generators (PRNGs), which use
deterministic algorithms to produce sequences that mimic randomness. Case studies, including Random.org,
HotBits, laser-based RNGs, and the Linux random number generator, illustrate practical implementations. We also
discuss vulnerabilities, security considerations, and the importance of entropy in generating unpredictable
sequences.

Keywords: Random number generation, pseudo-random number generation, entropy, cryptography, simulations.

Introduction:

Randomness plays a foundational role in modern
computing, especially in domains such as
cryptography, simulations, data sampling, and
statistical modeling. A sequence of numbers is said to
be random if its values are both uniformly distributed
and statistically independent of previous values

(Marsaglia, 2005). In the context of cryptography, the
unpredictability of such sequences directly correlates
with the strength of security protocols.

However, generating true randomness within
deterministic digital systems is a non-trivial task. As a
result, computer systems rely on two main categories

https://doi.org/10.37547/ajast/Volume05Issue05-16
https://doi.org/10.37547/ajast/Volume05Issue05-16
https://doi.org/10.37547/ajast/Volume05Issue05-16
https://doi.org/10.37547/ajast/Volume05Issue05-16

American Journal of Applied Science and Technology 71 https://theusajournals.com/index.php/ajast

American Journal of Applied Science and Technology (ISSN: 2771-2745)

of random number generation:

1. True Random Number Generators (TRNGs):
These depend on inherently unpredictable
physical phenomena—such as thermal noise,
radioactive decay, or quantum fluctuations—to
produce non-deterministic outputs. TRNGs are
typically slower but offer high entropy and
unpredictability, making them suitable for critical
cryptographic operations.

2. Pseudo-Random Number Generators (PRNGs):
These use deterministic algorithms to produce
long sequences of numbers that appear random,
starting from an initial seed value. While faster
and more reproducible than TRNGs, PRNGs can
be vulnerable to attacks if the seed or algorithm
is compromised.

Modern operating systems implement secure RNG
subsystems by blending both approaches: they
harvest entropy from physical events (as in TRNGs)
and feed it into cryptographically secure PRNGs, often
compliant with standards like NIST SP 800-90A. This
hybrid architecture allows for scalable, secure
random number generation for system processes and
user applications.

This paper provides a comparative analysis of random
number generation architectures across three major
operating systems—Windows, Linux, and macOS/iOS.
It explores the design principles, entropy sources, API
interfaces, cryptographic algorithms used, and
implications for security and performance in each
case.

Defining Randomness

In both theoretical and applied computer science,
randomness refers to the unpredictability and
uniformity of outcomes in a data sequence. A truly
random sequence must adhere to two foundational
statistical properties:

1. Uniform Distribution – Each possible value in the
output space must have an equal probability of
occurring. This ensures that no single value or
range of values is favored over others, thereby
eliminating bias in the output.

2. Independence – The occurrence of one value
must not influence or provide information about
subsequent values. Each generated output
should be statistically independent of the
previous and next values in the sequence (Kenny,
2005).

A classic real-world analogy is the roll of a fair six-
sided die: every number from 1 to 6 should appear
with equal probability (uniformity), and the result of
one roll should not affect or predict the result of the

next (independence).

In computational systems, maintaining these
properties is essential, especially in cryptographic
contexts where any deviation from randomness can
lead to patterns that adversaries may exploit. Thus,
rigorous mathematical and empirical tests are used to
assess the randomness of outputs produced by
random number generators.

Types of Random Number Generators

Random Number Generators (RNGs) can be broadly
classified into two categories: True Random Number
Generators (TRNGs) and Pseudo-Random Number
Generators (PRNGs). Each class serves specific needs
and presents distinct trade-offs between randomness
quality, performance, and practicality.

o True Random Number Generators (TRNGs)

TRNGs derive randomness from inherently
unpredictable physical phenomena, such as
radioactive decay or electronic noise. Because their
outputs are based on non-deterministic processes,
TRNGs provide high entropy and are theoretically
immune to prediction. However, TRNGs often suffer
from slow output rates, hardware dependencies, and
implementation complexities.

• Random.org: This online service utilizes
atmospheric noise as an entropy source to
generate random numbers. It is validated by
third-party randomness testing and is suitable for
applications requiring high-quality randomness
(Haahr, 2011). However, since it delivers output
over a network, it is not recommended for
cryptographic applications due to the risk of
transmission interception.

• HotBits: Developed by John Walker, HotBits uses
radioactive decay—a quantum process—as its
entropy source. While this method guarantees
true randomness, its generation speed is very
limited, producing only about 100 bytes per
second (HotBits, 2012), making it unsuitable for
high-throughput applications.

• Laser-Based RNGs: These devices exploit chaotic
fluctuations in laser intensity to generate entropy
at extremely high speeds, often exceeding 10
Gbps. However, the raw output requires
sophisticated post-processing to eliminate bias
and ensure uniform distribution. They are
effective but expensive and complex to deploy (Li,
Wang, & Zhang, 2010).

• Oscillator-Based RNGs: One of the most
commonly used hardware-based approaches,
oscillator RNGs extract entropy from clock jitter—
variations in the timing of electronic signals.

American Journal of Applied Science and Technology 72 https://theusajournals.com/index.php/ajast

American Journal of Applied Science and Technology (ISSN: 2771-2745)

While cost-effective, such systems may be
vulnerable to environmental manipulation (e.g.,
temperature or voltage changes) and often
require robust bias correction to maintain
randomness quality (Sunar et al., 2006).

o Pseudo-Random Number Generators (PRNGs)

Unlike TRNGs, PRNGs use deterministic algorithms to
produce sequences of numbers that appear random.
Initialized with a seed, these generators produce
reproducible sequences, which is beneficial for
simulations, games, and repeatable experiments.
However, in security contexts, predictability can be a
serious vulnerability if the seed or algorithm is
compromised.

• Linear Congruential Generator (LCG): One of the
oldest and simplest PRNGs, the LCG uses the
formula s_(i+1)=(a∙s_i+c)mod m where a, c, and
i are constants. Despite its simplicity, LCGs suffer
from short periods and high predictability when
parameters are known, making them unsuitable
for cryptographic applications (Chan, 2009).

• Lagged Fibonacci Generator: This method
improves upon LCGs by incorporating earlier
values in the sequence: s_(i+1)=(s_(i-p)±s_(i-q)
)mod m where p>q. While offering longer
periods, it remains deterministic and is thus not
ideal for security-sensitive tasks (Chan, 2009).

• Feedback Shift Registers: These systems
manipulate bit sequences using XOR and shift
operations. A prominent example is the
Mersenne Twister, which offers a very long
period of 2^19937-1 and high statistical quality
(Nishimura, 2000). However, it is not
cryptographically secure, as its internal state can
be reconstructed after observing a few hundred
outputs.

Security Considerations

Random Number Generators (RNGs) are foundational
components in cryptographic systems. However,
both True Random Number Generators (TRNGs) and
Pseudo-Random Number Generators (PRNGs)
present specific security risks that can compromise
their effectiveness if not properly addressed.

o Vulnerabilities in TRNGs

TRNGs, despite deriving entropy from physical
phenomena, are susceptible to hardware-related
attacks:

• Physical Attacks: Environmental factors such as
temperature fluctuations or electromagnetic
interference can introduce biases in oscillator-
based TRNGs, reducing their unpredictability.

• Wear and Tear: Long-term hardware degradation
can affect the consistency and quality of entropy
generation, leading to a decline in randomness
over time.

o Vulnerabilities in PRNGs

PRNGs, being algorithmically generated, rely heavily
on secure initialization and design:

• Seed Predictability: If the initial seed is
predictable or poorly generated, attackers can
reconstruct the PRNG’s output sequence, leading
to complete compromise of systems relying on it.

• Backdoors: A notable example is the NSA-
influenced Dual_EC_DRBG, which was suspected
to include a cryptographic backdoor due to its
mathematical structure (Schneier, 2007). This
case underscores the importance of transparency
and peer review in cryptographic standards.

o Forward and Backward Security

Modern secure RNGs aim to preserve confidentiality
even in the event of partial compromise:

• Forward Security: Ensures that past outputs
remain confidential even if the current internal
state is exposed.

• Backward Security: Guarantees that future
outputs cannot be predicted based on knowledge
of previous internal states or outputs.

CONCLUSIONS

Random number generation is essential in
computing, with TRNGs and PRNGs serving different
needs. TRNGs offer true unpredictability but are slow
and hardware-dependent. PRNGs are fast and
reproducible but require secure initialization. Future
research should focus on improving entropy sources
and hybrid models for better security and efficiency.

REFERENCES

Chan, W. K. (2009). Random Number Generation in
Simulation.

Gutterman, Z., Pinkas, B., & Reinman, T. (2006).
Analysis of the Linux Random Number Generator.

Haahr, M. (2011). Introduction to Randomness and
Random Numbers.

Marsaglia, G. (2005). Random Number Generators.

Schneier, B. (2007). Dual_EC_DRBG: A Case Study in
Backdoors.

Sunar, B., Martin, W., & Stinson, D. (2006). A Provably
Secure True Random Number Generator.

Barker, E., & Kelsey, J. (2015). Recommendation for
Random Number Generation Using Deterministic
Random Bit Generators (Revised). NIST Special

American Journal of Applied Science and Technology 73 https://theusajournals.com/index.php/ajast

American Journal of Applied Science and Technology (ISSN: 2771-2745)

Publication 800-90A Rev. 1.
https://doi.org/10.6028/NIST.SP.800-90Ar1

Eastlake, D., Schiller, J., & Crocker, S. (2005).
Randomness Requirements for Security. RFC 4086.
https://www.rfc-editor.org/rfc/rfc4086

Microsoft. (2023). Cryptography API: Next
Generation. Microsoft Docs.
https://learn.microsoft.com/en-
us/windows/win32/seccng/cng-portal

Microsoft. (2023). BCryptGenRandom function
(bcrypt.h). Microsoft Docs.
https://learn.microsoft.com/en-
us/windows/win32/api/bcrypt/nf-bcrypt-
bcryptgenrandom

Linux Kernel Documentation. (2023). Random
Number Generator.
https://www.kernel.org/doc/html/latest/admin-
guide/dev-random.html

Linux man-pages project. (2023). getrandom(2) –
Linux manual page. https://man7.org/linux/man-
pages/man2/getrandom.2.html

Apple Developer Documentation. (2023).
SecRandomCopyBytes.
https://developer.apple.com/documentation/securit
y/1399291-secrandomcopybytes

Apple. (2020). Platform Security Guide.
https://support.apple.com/guide/security/welcome/
web

Gutterman, Z., Pinkas, B., & Reinman, T. (2006).
Analysis of the Linux Random Number Generator.
IEEE Symposium on Security and Privacy.
https://doi.org/10.1109/SP.2006.26

Dorrendorf, L., Gutterman, Z., & Pinkas, B. (2007).
Cryptanalysis of the Random Number Generator of

the Windows Operating System. ACM CCS.
https://doi.org/10.1145/1315245.1315274

Lacharme, P. (2012). Security flaws in Linux's
/dev/random. https://eprint.iacr.org/2012/251

BSD Unix. (2022). arc4random and related APIs.
https://man.openbsd.org/arc4random

Kelsey, J., Schneier, B., Ferguson, N. (1999). Yarrow-
160: Notes on the Design and Analysis of the Yarrow
Cryptographic Pseudorandom Number Generator.
https://www.schneier.com/paper-yarrow.pdf

Dodis, Y., et al. (2013). Security Analysis of
Pseudorandom Number Generators with Input:
/dev/random is not Robust. ACM CCS.
https://doi.org/10.1145/2508859.2516661

Intel Corporation. (2014). Intel® Digital Random
Number Generator (DRNG) Software Implementation
Guide.
https://www.intel.com/content/www/us/en/conten
t-details/671488/intel-digital-random-number-
generator-drng-software-implementation-
guide.html

National Institute of Standards and Technology.
(2012). A Statistical Test Suite for Random and
Pseudorandom Number Generators for
Cryptographic Applications. NIST SP 800-22 Rev. 1a.
https://doi.org/10.6028/NIST.SP.800-22r1a

Müller, T. (2013). Security of the OpenSSL PRNG.
International Journal of Information Security, 12(4),
251–265. https://doi.org/10.1007/s10207-013-0213-
7

Debian Security Advisory. (2008). Debian OpenSSL
Predictable PRNG Vulnerability (DSA-1571).
https://www.debian.org/security/2008/dsa-1571

https://doi.org/10.6028/NIST.SP.800-90Ar1
https://doi.org/10.6028/NIST.SP.800-90Ar1
https://www.rfc-editor.org/rfc/rfc4086
https://www.rfc-editor.org/rfc/rfc4086
https://learn.microsoft.com/en-us/windows/win32/seccng/cng-portal
https://learn.microsoft.com/en-us/windows/win32/seccng/cng-portal
https://learn.microsoft.com/en-us/windows/win32/seccng/cng-portal
https://learn.microsoft.com/en-us/windows/win32/seccng/cng-portal
https://learn.microsoft.com/en-us/windows/win32/api/bcrypt/nf-bcrypt-bcryptgenrandom
https://learn.microsoft.com/en-us/windows/win32/api/bcrypt/nf-bcrypt-bcryptgenrandom
https://learn.microsoft.com/en-us/windows/win32/api/bcrypt/nf-bcrypt-bcryptgenrandom
https://learn.microsoft.com/en-us/windows/win32/api/bcrypt/nf-bcrypt-bcryptgenrandom
https://learn.microsoft.com/en-us/windows/win32/api/bcrypt/nf-bcrypt-bcryptgenrandom
https://learn.microsoft.com/en-us/windows/win32/api/bcrypt/nf-bcrypt-bcryptgenrandom
https://www.kernel.org/doc/html/latest/admin-guide/dev-random.html
https://www.kernel.org/doc/html/latest/admin-guide/dev-random.html
https://www.kernel.org/doc/html/latest/admin-guide/dev-random.html
https://www.kernel.org/doc/html/latest/admin-guide/dev-random.html
https://man7.org/linux/man-pages/man2/getrandom.2.html
https://man7.org/linux/man-pages/man2/getrandom.2.html
https://man7.org/linux/man-pages/man2/getrandom.2.html
https://man7.org/linux/man-pages/man2/getrandom.2.html
https://developer.apple.com/documentation/security/1399291-secrandomcopybytes
https://developer.apple.com/documentation/security/1399291-secrandomcopybytes
https://developer.apple.com/documentation/security/1399291-secrandomcopybytes
https://developer.apple.com/documentation/security/1399291-secrandomcopybytes
https://support.apple.com/guide/security/welcome/web
https://support.apple.com/guide/security/welcome/web
https://support.apple.com/guide/security/welcome/web
https://support.apple.com/guide/security/welcome/web
https://doi.org/10.1109/SP.2006.26
https://doi.org/10.1109/SP.2006.26
https://doi.org/10.1145/1315245.1315274
https://doi.org/10.1145/1315245.1315274
https://doi.org/10.1145/1315245.1315274
https://eprint.iacr.org/2012/251
https://eprint.iacr.org/2012/251
https://eprint.iacr.org/2012/251
https://man.openbsd.org/arc4random
https://man.openbsd.org/arc4random
https://man.openbsd.org/arc4random
https://www.schneier.com/paper-yarrow.pdf
https://www.schneier.com/paper-yarrow.pdf
https://www.schneier.com/paper-yarrow.pdf
https://doi.org/10.1145/2508859.2516661
https://doi.org/10.1145/2508859.2516661
https://doi.org/10.1145/2508859.2516661
https://www.intel.com/content/www/us/en/content-details/671488/intel-digital-random-number-generator-drng-software-implementation-guide.html
https://www.intel.com/content/www/us/en/content-details/671488/intel-digital-random-number-generator-drng-software-implementation-guide.html
https://www.intel.com/content/www/us/en/content-details/671488/intel-digital-random-number-generator-drng-software-implementation-guide.html
https://www.intel.com/content/www/us/en/content-details/671488/intel-digital-random-number-generator-drng-software-implementation-guide.html
https://www.intel.com/content/www/us/en/content-details/671488/intel-digital-random-number-generator-drng-software-implementation-guide.html
https://www.intel.com/content/www/us/en/content-details/671488/intel-digital-random-number-generator-drng-software-implementation-guide.html
https://www.intel.com/content/www/us/en/content-details/671488/intel-digital-random-number-generator-drng-software-implementation-guide.html
https://www.intel.com/content/www/us/en/content-details/671488/intel-digital-random-number-generator-drng-software-implementation-guide.html
https://www.intel.com/content/www/us/en/content-details/671488/intel-digital-random-number-generator-drng-software-implementation-guide.html
https://www.intel.com/content/www/us/en/content-details/671488/intel-digital-random-number-generator-drng-software-implementation-guide.html
https://www.intel.com/content/www/us/en/content-details/671488/intel-digital-random-number-generator-drng-software-implementation-guide.html
https://www.intel.com/content/www/us/en/content-details/671488/intel-digital-random-number-generator-drng-software-implementation-guide.html
https://doi.org/10.6028/NIST.SP.800-22r1a
https://doi.org/10.6028/NIST.SP.800-22r1a
https://doi.org/10.1007/s10207-013-0213-7
https://doi.org/10.1007/s10207-013-0213-7
https://doi.org/10.1007/s10207-013-0213-7
https://doi.org/10.1007/s10207-013-0213-7
https://www.debian.org/security/2008/dsa-1571
https://www.debian.org/security/2008/dsa-1571

