

Solving Differential Equations Using Complex Variables

Khudaybergenova Gulayim Sultanbay qizi

Trainee-teacher of the Department of Information Technologies, Mathematics, Physics and Chemistry of the Faculty of Zooengineering, Karakalpak Institute of Agriculture and Agrotechnologies, Uzbekistan

Received: 28 February 2025; **Accepted:** 29 March 2025; **Published:** 30 April 2025

Abstract: Solving differential equations is essential in many areas of science and engineering. Traditional methods, however, often become complicated when dealing with oscillatory or complex systems. This article explores how the use of complex variables simplifies the process of solving differential equations. By applying techniques such as Euler's formula, complexification of real problems, and the Residue Theorem, complex variables provide powerful and elegant methods for finding both real and complex solutions. Several illustrative examples are presented to demonstrate the efficiency and effectiveness of these approaches. The article emphasizes the importance of mastering complex-variable methods for a deeper understanding of differential equations and their applications.

Keywords: Differential equations; Complex variables; Euler's formula; Complexification; Residue Theorem; Laplace transform; Complex analysis; Mathematical methods.

Introduction:

Differential equations are fundamental to understanding change in both natural and engineered systems. They model everything from mechanical vibrations to population dynamics. Nevertheless, solving differential equations is not always straightforward. One highly effective approach is to utilize complex variables. In what follows, we will explore, with detailed examples, how complex variables provide elegant methods for solving differential equations.

First of all, a complex variable is a variable that can take on values from the set of complex numbers, typically expressed as:

$$z=x+iy$$

where x and y are real numbers, and i is the imaginary unit, satisfying $i^2=-1$. The theory of complex functions, known as complex analysis, equips us with tools like conformal mappings, contour integration, and analytic continuation — all of which prove extremely useful for solving both ordinary and partial differential equations [5].

To begin with, complex variables often simplify the mathematical structure of differential equations. Moreover, they can provide more general solutions and allow for the use of powerful theorems from

complex analysis. Furthermore, using complex exponentials can make otherwise complicated trigonometric problems much more manageable.

1. Using Euler's Formula to Solve Differential Equations

Euler's formula:

$e^{i\theta}=\cos\theta+is\in\theta$ is crucial in solving differential equations involving trigonometric terms.

Example 1:

Consider the second-order differential equation:

$$y''+y=0$$

A real solution involves sines and cosines. However, by considering a complex solution of the form:

$$y(x)=e^{ix}$$

we find:

$$y''(x)=-e^{ix}$$

Substituting back into the differential equation:

$$-y(x)+y(x)=0$$

Thus, e^{ix} is indeed a solution. Taking the real and imaginary parts, we obtain the general solution:

$$y(x)=C_1\cos x+C_2\sin x$$

where C_1 and C_2 are real constants.

Therefore, complex exponentials provide a shortcut to finding real solutions [1].

2. Complexification of a Real Problem

Another method is to complexify a real differential equation.

Example 2:

Consider the differential equation:

$$y'' - 4y' + 13y = 0$$

Instead of solving it using real methods, we consider a solution of the form:

$$y(x) = e^{\lambda x}$$

Substituting into the differential equation:

$$\lambda^2 e^{\lambda x} - 4\lambda e^{\lambda x} + 13e^{\lambda x} = 0$$

or, equivalently,

$$e^{\lambda x}(\lambda^2 - 4\lambda + 13) = 0$$

Thus, we solve the characteristic equation:

$$\lambda^2 - 4\lambda + 13 = 0$$

Using the quadratic formula:

$$\lambda = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(1)(13)}}{2(1)} = \frac{4 \pm \sqrt{16 - 52}}{2} = \frac{4 \pm \sqrt{-36}}{2} = \frac{4 \pm 6i}{2} = 2 \pm 3i$$

Thus, the general solution is:

$$y(x) = e^{2x}(C_1 \cos 3x + C_2 \sin 3x)$$

where C_1 and C_2 are real constants.

Consequently, although the roots are complex, the final solution is real, highlighting the power of complex methods in real analysis [4].

3. Solving Differential Equations Using the Residue Theorem

Moreover, when Laplace or Fourier transforms are involved, the Residue Theorem from complex analysis often provides a way to invert transforms and solve differential equations.

Example 3:

Suppose we solve the following initial-value problem using the Laplace transform:

$$y'' + 2y' + 5y = 0, y(0) = 1, y'(0) = 0$$

Taking the Laplace transform:

$$\begin{aligned} s^2Y(s) - sy(0) - y'(0) + 2(sY(s) - y(0)) + 5Y(s) &= 0s^2 \\ Y(s) - sy(0) - y'(0) + 2(sY(s) - y(0)) + 5Y(s) &= 0 \\ 0s^2Y(s) - sy(0) - y'(0) + 2(sY(s) - y(0)) + 5Y(s) &= 0 \end{aligned}$$

Substituting the initial conditions:

$$s^2Y(s) - s + 2(sY(s) - 1) + 5Y(s) = 0$$

Simplifying:

$$(s^2 + 2s + 5)Y(s) = s + 2$$

Thus:

$$Y(s) = \frac{s+2}{s^2 + 2s + 5}$$

The poles of $Y(s)$ are at $s = -1 \pm 2i$. To invert the Laplace transform, we can use the method of residues around these poles, or, more simply, recognize the structure and find:

$$y(t) = e^{-t}(A \cos(2t) + B \sin(2t))$$

Calculating A and B from initial conditions gives the complete solution [2].

Thus, complex analysis, and especially residues, play an indispensable role in transform methods.

The application of complex variables in solving differential equations offers numerous significant benefits. These advantages make complex analysis an indispensable tool in both theoretical and applied mathematics. First and foremost, complex variables often simplify the mathematical structure of problems. For instance, using Euler's formula allows trigonometric functions to be expressed in terms of exponentials, making differentiation and integration more straightforward.

Moreover, complex-variable methods provide a unified framework for solving both real and complex differential equations. Instead of handling sine, cosine, and exponential functions separately, they can be treated collectively as parts of a complex exponential function.

Additionally, working with complex variables often reveals hidden structures in solutions. For example, complex roots of characteristic equations lead naturally to oscillatory behavior, explaining physical phenomena such as vibrations and waves more clearly.

Furthermore, when dealing with Laplace or Fourier transforms, complex analysis — particularly the Residue Theorem — offers efficient techniques for evaluating integrals and inverting transforms. This is especially useful in engineering applications like control systems and signal processing.

Complex-variable techniques are not limited to pure mathematics; they are widely used in physics, electrical engineering, fluid dynamics, and even economics. Therefore, mastering these methods enhances one's ability to tackle a broader range of real-world problems.

Finally, complex methods often lead to more elegant and aesthetically pleasing solutions. Many complicated real-variable computations can be replaced with simpler, more powerful methods from complex analysis, reducing the risk of error and improving clarity.

CONCLUSION

In conclusion, solving differential equations using

complex variables not only simplifies computations but also provides greater insight into the nature of solutions. Whether it is through applying Euler's formula, complexifying real problems, or using the Residue Theorem for inverse transforms, complex variables serve as a bridge to more elegant and complete solutions. Therefore, any student or researcher in mathematics, physics, or engineering would greatly benefit from mastering these techniques.

Ultimately, complex methods transform seemingly difficult problems into manageable and often beautiful solutions — a true testament to the power of mathematics.

REFERENCES

1. Ablowitz, M. J., & Fokas, A. S. (2003). Complex variables: introduction and applications. Cambridge University Press.
2. Brown, J. W., & Churchill, R. V. (2009). Complex variables and applications. McGraw-Hill.,
3. Chen, S. C., & Shaw, M. C. (2001). Partial differential equations in several complex variables (Vol. 19). American Mathematical Soc.
4. Dettman, J. W. (2012). Applied complex variables. Courier Corporation.
5. Weinberger, H. F. (2012). A first course in partial differential equations: with complex variables and transform methods. Courier Corporation.