
Volume 02 Issue 11-2022 29

American Journal Of Applied Science And Technology
(ISSN – 2771-2745)
VOLUME 02 ISSUE 11 Pages: 29-35

SJIF IMPACT FACTOR (2021: 5. 705) (2022: 5. 705)

OCLC – 1121105677 METADATA IF – 5.582

Publisher: Oscar Publishing Services

Servi

ABSTRACT

This article devoted to improve the process and art of creating computer programs using specific programming

languages. It is also stated that a particular programming language is based on some guiding idea that significantly

influences the style of the corresponding programs.

KEYWORDS

Computer science, information technology, programming languages, algorithms, Coding and compilation,

programmers

INTRODUCTION

For several decades, computer science and

information technology have been associated with a

stationary personal computer, local software installed

on it and the presence of a network that allows data to

be exchanged between the nodes of this network.

However, the development of computing technology

and the spread of the global network made it possible

to use cloud computing, which implies the transition of

computing resources from discrete devices to

common centralized clusters connected via the

Internet[1].

THE MAIN RESULTS AND FINDINGS

 Research Article

CREATING COMPUTER PROGRAMS USING SPECIFIC PROGRAMMING

LANGUAGES

Submission Date: November 01, 2022, Accepted Date: November 05, 2022,

Published Date: November 18, 2022

Crossref doi: https://doi.org/10.37547/ajast/Volume02Issue11-06

Rakhimjon I. Tashpolatov
Senior Lecturer Department Of Informatics Kokan State Pedagogical Institute Uzbekistan

Journal Website:

https://theusajournals.

com/index.php/ajast

Copyright: Original

content from this work

may be used under the

terms of the creative

commons attributes

4.0 licence.

https://doi.org/10.37547/ajast/Volume02Issue11-05
https://scholar.google.co.in/scholar?q=REPRESENTATION%20OF%20THE%20PATTERN%20OF%20MORPECH%20IN%20ARCHITECTURE%20AS%20A%20SYMBOL%20OF%20ETERNAL%20MOVEMENT
https://www.mendeley.com/search/?page=1&query=STRUCTURAL%20STUDIES%20OF%20FILMS%20CADMIUM%20TELLURIDE%20GROWN%20ON%20SILICON%20SUBSTRATES
https://theusajournals.com/index.php/ajast
https://theusajournals.com/
https://doi.org/10.37547/ajast/Volume02Issue11-06
https://doi.org/10.37547/ajast/Volume02Issue11-06
https://theusajournals.com/index.php/ajast
https://theusajournals.com/index.php/ajast
https://theusajournals.com/index.php/ajast
https://theusajournals.com/index.php/ajast

Volume 02 Issue 11-2022 30

American Journal Of Applied Science And Technology
(ISSN – 2771-2745)
VOLUME 02 ISSUE 11 Pages: 29-35

SJIF IMPACT FACTOR (2021: 5. 705) (2022: 5. 705)

OCLC – 1121105677 METADATA IF – 5.582

Publisher: Oscar Publishing Services

Servi

The term programming means the process and art of

creating computer programs using specific

programming languages. In the general sense of the

word, programming is the formalization of a

predetermined state, in response to an event,

implemented by means of mathematics or the natural

sciences. In the narrow sense of the word,

programming is seen as the coding of algorithms in a

given programming language. In a broader sense,

programming is the process of creating programs, that

is, developing software.

Programming includes:

• Analysis

• Design - development of a complex of

algorithms

• Coding and compilation - writing the source

code of the program and converting it into executable

code using a compiler

• Testing and debugging - identifying and

eliminating errors in programs

• Testing and delivery of programs

• Escort

Different programming languages support different

programming styles (called "programming

paradigms"). In part, the art of programming is to

choose one of the languages that best suits the task at

hand. Different languages require the programmer to

have different levels of attention to detail when

implementing an algorithm, often resulting in a trade-

off between simplicity and performance (or between

programmer time and user time).

The only language directly executed by the processor

is machine language (also called "machine code"). As

already mentioned, initially, all programmers worked

out every little thing in machine code, but now this

difficult work is no longer being done. Instead,

programmers write source code, and the computer

(using a compiler, interpreter, or assembler, which

we'll talk about a little later) translates it, in one or

more steps, fine-tuning all the details, into machine

code ready to run on the target processor. However, in

some languages, instead of machine code, an

interpreted "virtual machine" binary code, also called

byte-code, is generated. This approach is used in Forth,

Lisp, Java (Chapter 3 of the abstract is devoted to this

language).

Now that we know a little about the concept of

"programming", we can move on to the material part

of the process of creating programs. These, of course,

are technical (hardware) means of programming - a set

of electrical, electronic and mechanical components of

automated systems constitutes their technical support

(as opposed to software, which is software of

automated systems). For example, an electronic

computer (computer) or computer is a set of hardware

and software tools based on the use of electronics and

designed for automatic or automated data processing

in the process of solving computational and

information problems.

 Programming paradigms

A particular programming language is based on some

guiding idea that has a significant impact on the style

of the corresponding programs. Depending on the

purpose and / or method of writing programs,

programming paradigms (also known as approaches or

technologies) are distinguished:

• Structured programming is a programming

methodology based on a

https://doi.org/10.37547/ajast/Volume02Issue11-05
https://scholar.google.co.in/scholar?q=REPRESENTATION%20OF%20THE%20PATTERN%20OF%20MORPECH%20IN%20ARCHITECTURE%20AS%20A%20SYMBOL%20OF%20ETERNAL%20MOVEMENT
https://www.mendeley.com/search/?page=1&query=STRUCTURAL%20STUDIES%20OF%20FILMS%20CADMIUM%20TELLURIDE%20GROWN%20ON%20SILICON%20SUBSTRATES
https://theusajournals.com/index.php/ajast

Volume 02 Issue 11-2022 31

American Journal Of Applied Science And Technology
(ISSN – 2771-2745)
VOLUME 02 ISSUE 11 Pages: 29-35

SJIF IMPACT FACTOR (2021: 5. 705) (2022: 5. 705)

OCLC – 1121105677 METADATA IF – 5.582

Publisher: Oscar Publishing Services

Servi

systematic approach to the analysis, design and

implementation of software. This methodology was

born in the early 70s and proved to be so viable that it

is still the main one in a large number of projects. The

basis of this technology is the following provisions[2]:

• A complex task is broken down into smaller,

functionally better

manageable tasks. Each task has one input and one

output. In this case, the control flow of the program

consists of a set of elementary subtasks with a clear

functional purpose.

• The simplicity of the control structures used in

the task. This provision

means that logically the task should consist of a

minimal, functionally complete set of fairly simple

control structures. An example of such a system is the

algebra of logic, in which each function can be

expressed through a functionally complete system:

disjunction, conjunction, and negation.

• The development of the program should be carried

out in stages. At each stage, a limited number of clearly

defined tasks should be solved with a clear

understanding of their meaning and role in the context

of the entire task. If such an understanding is not

achieved, this indicates that this stage is too large and

should be divided into more elementary steps.

The concept of modular programming. As well as for

the structural programming technology, the concept

of modular programming can be formulated in the

form of several concepts and provisions:

• Functional decomposition of a task - splitting a large

task into a number of smaller, functionally

independent subtasks - modules. Modules are

interconnected only by input and output data.

• Module - the basis of the concept of modular

programming. Each module in the functional

decomposition is a "black box" with one input and one

output. The modular approach allows you to painlessly

upgrade the program during its operation and

facilitates its maintenance. Additionally, the modular

approach allows you to develop parts of the programs

of one project in different programming languages,

and then use the assembly tools to combine them into

a single boot module.

• Implemented solutions should be simple and clear. If

the purpose of the module is not clear, then this

indicates that the decomposition of the initial or

intermediate task was not done well enough. In this

case, it is necessary to analyze the task again and,

possibly, to carry out an additional division into

subtasks. If there are difficult places in the project, they

need to be documented in more detail using a well-

thought-out comment system. This process should be

continued until you really achieve a clear

understanding of the purpose of all the modules of the

problem and their optimal combination.

• The purpose of all module variables should be

described using comments as they are defined.

Object-Oriented Programming (OOP). The idea of OOP

is to link data with procedures that process this data

into a single whole - an object. OOP is based on three

essential principles that give objects new properties.

These principles are encapsulation, inheritance, and

polymorphism.

• Encapsulation - combining data and algorithms for

processing this data into a single whole. Within OOP,

data are called fields of an object, and algorithms are

called object methods.

https://doi.org/10.37547/ajast/Volume02Issue11-05
https://scholar.google.co.in/scholar?q=REPRESENTATION%20OF%20THE%20PATTERN%20OF%20MORPECH%20IN%20ARCHITECTURE%20AS%20A%20SYMBOL%20OF%20ETERNAL%20MOVEMENT
https://www.mendeley.com/search/?page=1&query=STRUCTURAL%20STUDIES%20OF%20FILMS%20CADMIUM%20TELLURIDE%20GROWN%20ON%20SILICON%20SUBSTRATES
https://theusajournals.com/index.php/ajast

Volume 02 Issue 11-2022 32

American Journal Of Applied Science And Technology
(ISSN – 2771-2745)
VOLUME 02 ISSUE 11 Pages: 29-35

SJIF IMPACT FACTOR (2021: 5. 705) (2022: 5. 705)

OCLC – 1121105677 METADATA IF – 5.582

Publisher: Oscar Publishing Services

Servi

• Inheritance - property of objects to generate their

descendants. A child object automatically inherits all

fields and methods from its parents, can supplement

objects with new fields and replace (override) parent

methods or supplement them.

• Polymorphism is a property of related objects (ie

objects that have the same common parent) to solve

similar problems in different ways.

There are other programming technologies, which

should also be said a little.

Application programming - development and

debugging of programs for end users, such as

accounting, word processing, etc.

System programming - development of general

software tools, including operating systems, auxiliary

programs, general system software packages, for

example: automated control systems, database

management systems, etc.

Declarative (logical, production) programming is a

programming method designed to solve artificial

intelligence problems. In this context, the program

describes the logical structure of the solution to the

problem, indicating mainly what needs to be done,

without going into details of how it is done.

Programming languages such as Prolog are used[3].

Parallel programming is the development of programs

that provide simultaneous (parallel) execution of

operations related to data processing.

Procedural (procedure-oriented) programming is a

programming method in which programs are written

as lists of sequentially executed instructions. It uses

procedurally oriented programming languages.

Functional programming is a programming method

based on dividing an algorithm for solving a problem

into separate functional modules, as well as describing

their relationships and the nature of interaction. For

functional programming, the most widely used

languages are HOPE and ML. Elements of functional

programming are also implemented in other

languages, such as C.

Heuristic programming is a programming method

based on modeling human mental activity. It is used to

solve problems that do not have a strictly formalized

algorithm or are associated with incomplete initial

data.

Toolkit of programming technology

And finally, in order to fully understand the principle of

the programming system, we will consider the tools of

programming technology, i.e. a set of programs that

provide technology for the development, debugging

and implementation of software products.

Currently, the direction associated with the technology

of creating software products is rapidly developing.

This is due to the transition to industrial technology for

the production of programs, the desire to reduce the

time, labor and material costs for the production and

operation of programs, to ensure a guaranteed level of

their quality[4].

Within these areas, the following groups of software

products have been formed:

1. tools for creating applications (a set of programming

languages and systems, as well as various software

systems for debugging and supporting programs being

created.), including:

• local tools that ensure the performance of individual

work on the creation of programs; include

https://doi.org/10.37547/ajast/Volume02Issue11-05
https://scholar.google.co.in/scholar?q=REPRESENTATION%20OF%20THE%20PATTERN%20OF%20MORPECH%20IN%20ARCHITECTURE%20AS%20A%20SYMBOL%20OF%20ETERNAL%20MOVEMENT
https://www.mendeley.com/search/?page=1&query=STRUCTURAL%20STUDIES%20OF%20FILMS%20CADMIUM%20TELLURIDE%20GROWN%20ON%20SILICON%20SUBSTRATES
https://theusajournals.com/index.php/ajast

Volume 02 Issue 11-2022 33

American Journal Of Applied Science And Technology
(ISSN – 2771-2745)
VOLUME 02 ISSUE 11 Pages: 29-35

SJIF IMPACT FACTOR (2021: 5. 705) (2022: 5. 705)

OCLC – 1121105677 METADATA IF – 5.582

Publisher: Oscar Publishing Services

Servi

programming languages and systems, as well as the

user's tool environment;

• integrated software developer environments that

provide a set of interrelated work to create programs

that increase the productivity of programmers[5];

2. CASE-technology (Computer - AidedSystem

Engineering), representing methods of analysis, design

and creation of software systems and designed to

automate the development and implementation of

information systems.

I would like to dwell on CASE - technologies in more

detail, because the idea of them is connected in our

minds with something that has nothing to do with

ordinary programming.

The means of CASE-technologies are divided into two

groups:

• implementations built into the system - all design and

implementation decisions are tied to the selected

database management system (DBMS);

• system-independent implementation - all design

solutions are focused on the unification of the initial

stages of the life cycle and the means of their

documentation, provide greater flexibility in the choice

of means of implementation.

The main advantage of CASE-technology is the support

of team work on the project due to the possibility of

working in the local network of developers,

export/import of any fragments of the project,

organizational project management.

Within the framework of CASE-technologies, the

project is accompanied in its entirety, and not only its

program codes. Project materials prepared in CASE

technology serve as a task for programmers, and

programming itself is rather reduced to coding -

translation of data structures and methods for their

processing into a certain language, if automatic code

generation is not provided[6].

Most CASE technologies also use the "prototype"

method to quickly create programs in the early stages

of development. Code generation of programs is

carried out automatically - up to 90% of object codes

and texts are in high-level languages, and Ada, C, Cobol

are most often used as languages.

Today, the world's leading CASE system is Rational

Rose by Rational Software Corporation. Rational Rose

aims to create modules using the Unified Modeling

Language (UML). The latest version of the company's

CASE system is already being used to create

commercial software and supports popular

programming languages such as Java, C++, Smalltalk,

Ada, Visual Basic and Forte.

Using such technologies, it is possible to interactively

develop the architecture of the application being

created, generate its source texts and, in parallel, work

on documenting the system being developed.

Finally, having considered almost all aspects of the

programming process, we move on to the most

significant component - programming languages.

“Natural languages are not natural for machines,”

once said the American programmer Alan J. Perlis. We

will prove the correctness of his statement in the next

chapter.

REFERENCES

1. Muydinovich R.I. Methodology of using the

google classroom mobile application in

teaching informatics and information

technologies for secondary school students.

https://doi.org/10.37547/ajast/Volume02Issue11-05
https://scholar.google.co.in/scholar?q=REPRESENTATION%20OF%20THE%20PATTERN%20OF%20MORPECH%20IN%20ARCHITECTURE%20AS%20A%20SYMBOL%20OF%20ETERNAL%20MOVEMENT
https://www.mendeley.com/search/?page=1&query=STRUCTURAL%20STUDIES%20OF%20FILMS%20CADMIUM%20TELLURIDE%20GROWN%20ON%20SILICON%20SUBSTRATES
https://theusajournals.com/index.php/ajast

Volume 02 Issue 11-2022 34

American Journal Of Applied Science And Technology
(ISSN – 2771-2745)
VOLUME 02 ISSUE 11 Pages: 29-35

SJIF IMPACT FACTOR (2021: 5. 705) (2022: 5. 705)

OCLC – 1121105677 METADATA IF – 5.582

Publisher: Oscar Publishing Services

Servi

European Journal of Interdisciplinary Research

and Development 3, 158-162 p.

2. Bishop D. Effective work: Java 2. - St.

Petersburg: Peter; К.: BHV Publishing Group,

2002. - 592s.

3. Zaretskaya I.T., Kolodyazhny B.G., Gurzhiy A.N.,

Sokolov A.Yu. Informatics 10-11 class. - K .:

"Forum", 2001 - 494s.

4. Lyakhovich V.F. Fundamentals of informatics. -

Rostov-on-Don: Phoenix, 1996. - 699s.

5. Informatics: Basic course / S.V. Simonovich and

others - St. Petersburg: Peter, 1999 - 640s.

6. Website materials: www.sun.ru

7. Kamolov.A. Methods Of Teaching Computer

Science In Higher Education. International

Journal of Advanced Science and Technology 7

(29), 2221-2224

1. 8. Umaraliyeva M.A. Organizational-

Pedagogical Conditions of Forming

Professional Competence of Teachers

 //Journal of Foreign Language

Teaching and Applied Linguistics.2015. –Р. 187.

8. Мусурмонова О., Умаралиева М. Оилада

ногирон фарзандлар учун тўлақонли ҳаёт

тарзини яратишда ота-оналар ва маҳалла

мутасаддиларининг билим, кўникма ва

малакаларини ривoжлaнтиришнинг

шакллари ва усуллари.– Т.:2022.,

“Педагогика” илмий-назарий журнал.№2.–7-

9б.

9. Расулов, А. Б. (2020). ON THE ROLE OF

SUSTAINABLE DEVELOPMENT IN

ENVIRONMENTAL PROTECTION. ГЕОГРАФИЯ:

ПРИРОДА И ОБЩЕСТВО, 1(3).

10. Ходжиева, З. У. (2016). ГУМАНИЗАЦИЯ

ДИДАКТИЧЕСКИХ ОТНОШЕНИЙ В

СОВРЕМЕННОМ ОБРАЗОВАНИИ. Молодежь

в науке и культуре XXI в.: материалы

междунар. науч.-, 201.

11. Rasulov, A., Saparov, K., & Nizamov, A. (2021).

METHODS OF RESEARCH OF TOPONIMES. In

ЛУЧШАЯ ИССЛЕДОВАТЕЛЬСКАЯ РАБОТА

2021 (pp. 181-184). Rasulov, A., Saparov, K., &

Nizamov, A. (2021). METHODS OF RESEARCH

OF TOPONIMES. In ЛУЧШАЯ

ИССЛЕДОВАТЕЛЬСКАЯ РАБОТА 2021 (pp. 181-

184).

12. Saparov, K., Rasulov, A., & Nizamov, A. (2021).

Problems of regionalization of geographical

names. In ИННОВАЦИИ В НАУКЕ, ОБЩЕСТВЕ,

ОБРАЗОВАНИИ (pp. 119-121).

13. Rasulov, A. B., & Rasulova, N. A. (2020).

METHODOLOGY OF GEOECOLOGICAL

INDICATORS OF SUSTAINABLE

DEVELOPMENT, GLOBAL GEOECOLOGICAL

INDICATORS. In СОВРЕМЕННЫЕ НАУЧНЫЕ

ИССЛЕДОВАНИЯ: АКТУАЛЬНЫЕ ВОПРОСЫ,

ДОСТИЖЕНИЯ И ИННОВАЦИИ (pp. 302-305).

14. Rasulov, A. (2022, August). ANALYSIS OF

ECOLOGICAL SITUATION AND METHODS OF

ITS ASSESSMENT. In Conference Zone (pp. 24-

27).

15. Rasulov, A., Saparov, K., & Nizamov, A. (2021).

THE IMPORTANCE OF THE STRATIGRAPHIC

LAYER IN TOPONYMICS. CURRENT RESEARCH

JOURNAL OF PEDAGOGICS, 2(12), 61-67.

16. Odilov, B. A., & Karimov, N. R. (2020). Analysis

of Targeted Research in 20-30 Years of the XX

Century. PalArch's Journal of Archaeology of

Egypt/Egyptology, 17(6), 8887-8893.

17. Omonov, Q., & Karimov, N. (2020). Importance

Of Ancestoral Heritage. The American Journal

of Social Science and Education Innovations,

2(09), 196-202.

18. Kulmatov, R., Rasulov, A., Kulmatova, D.,

Rozilhodjaev, B., & Groll, M. (2015). The

modern problems of sustainable use and

management of irrigated lands on the example

https://doi.org/10.37547/ajast/Volume02Issue11-05
https://scholar.google.co.in/scholar?q=REPRESENTATION%20OF%20THE%20PATTERN%20OF%20MORPECH%20IN%20ARCHITECTURE%20AS%20A%20SYMBOL%20OF%20ETERNAL%20MOVEMENT
https://www.mendeley.com/search/?page=1&query=STRUCTURAL%20STUDIES%20OF%20FILMS%20CADMIUM%20TELLURIDE%20GROWN%20ON%20SILICON%20SUBSTRATES
https://theusajournals.com/index.php/ajast

Volume 02 Issue 11-2022 35

American Journal Of Applied Science And Technology
(ISSN – 2771-2745)
VOLUME 02 ISSUE 11 Pages: 29-35

SJIF IMPACT FACTOR (2021: 5. 705) (2022: 5. 705)

OCLC – 1121105677 METADATA IF – 5.582

Publisher: Oscar Publishing Services

Servi

of the Bukhara region (Uzbekistan). Journal of

Water Resource and Protection, 7(12), 956.

19. РАСУЛОВ, А. Б., & АБДУЛЛАЕВА, Д. Н. (2020).

ПЕДАГОГИЧЕСКИЕ И ПСИХОЛОГИЧЕСКИЕ

АСПЕКТЫ РАЗВИТИЯ НАВЫКОВ

ИСПОЛЬЗОВАНИЯ САЙТОВ ИНТЕРНЕТАВ

ПРОЦЕССЕ повышения

квалификацииРАБОТНИКОВ НародНОГО

ОБРАЗОВАНИЯ. In Профессионально-

личностное развитие будущих специалистов

в среде научно-образовательного кластера

(pp. 466-470).

20. Rasulov, A. B. (2020). GEOECOLOGICAL

ASPECTS OF SUSTAINABLE DEVELOPMENT. In

SCIENCE AND EDUCATION: PROBLEMS AND

INNOVATIONS (pp. 307-310).

21. Hojieva, Z. U. (2014). The Role of" Mark" in

Humanization of Didactic Relationships. In

Young Scientist USA (pp. 33-36).

22. Khabibullaevich, R. B. (2022). The Importance

of Teaching Folk Crafts to Teachers of

Technological Education in the Educational

Process. Journal of Pedagogical Inventions and

Practices, 9, 118-120.

23. Razzokov, B. K. (2022). The System Of

Formation Of Professional Culture Of Teachers

Of Future Technological Education Through

National Values. Journal of Positive School

Psychology, 1659-1665.

https://doi.org/10.37547/ajast/Volume02Issue11-05
https://scholar.google.co.in/scholar?q=REPRESENTATION%20OF%20THE%20PATTERN%20OF%20MORPECH%20IN%20ARCHITECTURE%20AS%20A%20SYMBOL%20OF%20ETERNAL%20MOVEMENT
https://www.mendeley.com/search/?page=1&query=STRUCTURAL%20STUDIES%20OF%20FILMS%20CADMIUM%20TELLURIDE%20GROWN%20ON%20SILICON%20SUBSTRATES
https://theusajournals.com/index.php/ajast

