
American Journal of Applied Science and Technology 30 https://theusajournals.com/index.php/ajast 

 
 

 VOLUME Vol.05 Issue01 2025 

PAGE NO. 30-34 

DOI 10.37547/ajast/Volume05Issue01-08 

 
 
 
 

Approximate solution of the galerkin method for one 

non-classical problem of parabolic type 
 

Mamatov A. Z. 

Tashkent Institute of Textile and Light Industry, Tashkent city, Uzbekistan 

 

Raxmonov J.T. 

Senior teacher of Gulistan state University, Uzbekistan 

 

Xamzakulov E.A. 

Intern teacher of Gulistan state peadagogical institute, Gulistan town, Uzbekistan 

 

Sulaymanova N.O. 

Intern teacher of Guliston state pedagogical institute, Gulistan town, Uzbekistan 

 

 

 

Received: 25 October 2024; Accepted: 28 December 2024; Published: 30 January 2025 

 

Abstract: The article considers one boundary value problem of parabolic type with a divergent main part, when 
the boundary condition contains the time derivative of the desired function. Such non-classical problems arise in 
a number of applied problems, for example, when a homogeneous isotropic body is placed in the inductor of an 
induction furnace and an electromagnetic wave falls on its surface. Such problems have been little studied, so the 
study of problems of parabolic type, when the boundary condition contains the time derivative of the desired 
function, is relevant. The work defines a generalized solution to the problem under consideration in the space 

Н1,1̃(𝑄𝑇). The purpose of the study is to prove the theorem of the existence and uniqueness of an approximate 
solution of the Bubnov-Galerkin method for the considered non-classical parabolic problem with a divergent main 
part, when the boundary condition contains the time derivative of the desired function. 

 

Keywords: Mixed problems, quasilinear equation, boundary condition, Galerkin method, generalized solution, 
parabolic type, approximate solution, error estimate, a priori estimates, coordinate system, monotonicity, 
inequalities, boundary, domain, scalar product. 

 

Introduction: When studying a number of current 
technical problems, it becomes necessary to study 
mixed parabolic problems, when the boundary 
condition contains a time derivative of the desired 
function. Problems of this type arise, for example, 
when a homogeneous isotropic body is placed in the 
inductor of an induction furnace and an 
electromagnetic wave falls on its surface. Some 
nonlinear problems of parabolic type with a boundary 
condition containing the time derivative of the desired 
function were considered, for example, in works [1-3]. 

Many scientists have been involved in constructing an 
approximate solution using the Galerkin method and 
obtaining a priori estimates of the approximate 
solution for parabolic classical quasilinear problems 
without a time derivative in the boundary condition: 
Mikhlin S.G., Douglas J. Jr., Dupont T., Dench J. E., Jr., 
Jutchell L., and others [4-7]. And quasilinear problems, 
when the boundary condition contains the time 
derivative of the desired function using the Galerkin 
method, are studied in works [8-12]. 

Statement of the problem. In this paper, we consider a 
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quasilinear problem of parabolic type, when the 
boundary condition contains the time derivative of the 

desired function: 

 

{

𝑢𝑡 −
𝑑

𝑑𝑥𝑖
𝑎𝑖(𝑥, 𝑡, 𝑢, ∇𝑢) + 𝑎(𝑥, 𝑡, 𝑢, ∇𝑢) = 0  ,

𝑎0𝑢𝑡 + 𝑎𝑖(𝑥, 𝑡, 𝑢, ∇𝑢) cos(𝜈, 𝑥𝑖) = 𝑔(𝑥, 𝑡, 𝑢),       (𝑥, 𝑡) ∈ 𝑆𝑡  ,

𝑢(𝑥, 0) = 𝑢0(𝑥)  , 𝑥 ∈ 𝛺

               (1) 

𝑤ℎ𝑒𝑟𝑒  𝛺 − 𝑏𝑜𝑢𝑛𝑑𝑒𝑑 𝑑𝑜𝑚𝑎𝑖𝑛 𝑖𝑛 Е2,  𝑎0 = 𝑐𝑜𝑛𝑠𝑡 > 0, 𝑄𝑇 =  𝛺 × [0, Т], 𝑆𝑇 =  𝑆 × [0, Т],  S= 𝜕𝛺 

       Definition. A generalized solution from the space 𝑊2
1,1̃(𝑄𝑇) = {𝑈 ∈ 𝑊2

1,1(𝑄𝑇): 𝑎0𝑈𝑡 ∈ 𝐿2(𝑆𝑇)} of problem (1) is 

a function from 𝑊2
1,1̃(𝑄𝑇), satisfying the following identity 

             ∫ (𝑢𝑡𝜂 + 𝑎𝑖(𝑥, 𝑡, 𝑢, ∇𝑢)𝜂𝑥𝑖 + 𝑎(𝑥, 𝑡, 𝑢, ∇𝑢)𝜂)
𝑄𝑇

𝑑𝑥𝑑𝑡 + ∫ (𝑎0𝑢𝑡 +                      +𝑔(𝑥, 𝑡, 𝑢)))𝜂)
𝑆𝑇

𝑑𝑥𝑑𝑡 = 0                                                           

(2)    

∀ 𝜂 ∈ 𝑊2
1(𝛺)  

Let us assume that the following conditions are satisfied: 
A. 𝑎𝑡 (𝑥, 𝑡, 𝑢, 𝑝) ∈ {𝛺 ̅ × [𝑂, 𝑇] × 𝐸1 × 𝐸2}    functions   𝑎𝑖(𝑥, 𝑡, 𝑢, 𝑝) , 𝑎(𝑥, 𝑡, 𝑢, 𝑝) are measurable 

in(𝑥, 𝑡, 𝑢, 𝑝), continuous in (t,u,p) and satisfy the inequalities 

|𝑎𝑖(𝑥, 𝑡, 𝑢, 𝑝)| ≤ 𝐶(|𝑃| + |𝑈|𝑘) + 𝜑1(𝑥, 𝑡) , 𝜑1 ∈ 𝐿2(𝑄𝑇) ,   𝑖 = 1,2            (2.1) 

|𝑎(𝑥, 𝑡, 𝑢, 𝑝)| ≤ 𝐶(|𝑃|2−𝜖 + |𝑈|𝑘) + 𝜑2(𝑥, 𝑡) ,     𝜑2 ∈ 𝐿𝑞(𝑄𝑇),           (3) 

where    |𝑃| = (∑ 𝑝𝑖
2𝑚

𝑖=1 )
1

2,   𝑘 < ∞, 𝜀 > 0, 𝑞 > 1 
B. The functions 𝑎𝑖(𝑥, 𝑡, 𝑢, 𝑝) have the form: 

𝑎𝑖(𝑥, 𝑡, 𝑢, 𝑝) = �̅�𝑖(𝑥, 𝑡, 𝑢, 𝑝) + �̿�𝑖(𝑥, 𝑝)                                            (4) 
here 

�̅�𝑖(𝑥, 𝑡, 𝑢, 𝑝) =
𝜕�̅�(𝑥,𝑡,𝑢,𝑝)

𝜕р𝑖
, 

|
𝜕�̅�

𝜕𝑡
| ≤ 𝐶(|𝑢|2𝑟 + |𝑝|2) + 𝜑3(𝑥, 𝑡) ,     𝜑3 ∈ 𝐿1(𝑄𝑇) 

      |
𝜕�̅�

𝜕𝑢
| ≤ 𝐶(|𝑢|𝑟 + |𝑝|) + 𝜑4(𝑥, 𝑡) ,     𝜑4 ∈ 𝐿2(𝑄𝑇)                      (5) 

                      𝑟 ≥ 0    ,     ∫ �̅�
𝛺

(𝑥, 𝑡, 𝑢, ∇𝑢)𝑑𝑥 |
𝑡
0

≥ 0 

C. For any smooth function 𝑈(𝑥, 𝑡) the inequality holds. 

∫ �̿�𝑖𝑄𝑇
(𝑥, ∇𝑈)𝑈𝑡𝑥𝑖

dxdt ≥ ν‖∇U‖L2(𝛺)

2                                                  (6) 

where  ν- positive constant. 

D. Monotonicity condition. For any functions u, 𝑣 ∈ 𝑊2
1(𝛺) 

(𝑎𝑖(𝑥, 𝑡, 𝑢, ∇𝑢) − 𝑎𝑖(𝑥, 𝑡, 𝑣, ∇𝑣), 𝑢𝑥𝑖
− 𝑣𝑥𝑖

)𝛺 +
+(𝑎(𝑥, 𝑡, 𝑢, ∇𝑢) − 𝑎(𝑥, 𝑡, 𝑣, ∇𝑣), 𝑢 − 𝑣)Ω ≥ 0

                                          

(7) 

E. At (𝑥, 𝑡, 𝑢) ∈ {�̅� × [𝑜, 𝑇] × 𝐸1} 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑔(𝑥, 𝑡, 𝑢)   
(𝑡, 𝑢) is continuous in (𝑡, 𝑢) and satisfies the inequality: 

|𝑔(𝑥, 𝑡, 𝑢) − 𝑔(𝑥, 𝑡, 𝑣)| ≤ 𝑔0|𝑢 − 𝑣|,        𝑔(𝑥, 𝑡, 0) ∈ 𝐿2(𝑆𝑇)                      (8) 
 

Main results. Let us construct an approximate solution according to Galerkin [13-17]. Let's take a coordinate system 

from the space 𝑊2
1(𝛺). We will seek an approximate solution 𝑈(𝑥, 𝑡) in the form  

𝑈(𝑥, 𝑡) = ∑ 𝐶𝑘
𝑛

𝑛

𝑘=1

(𝑡)𝜑𝑘(𝑥)              (9) 

     
     

where С𝑘
𝑛(𝑡)  are determined from the system of ordinary differential equations  
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(𝑈𝑡 , 𝜑𝑗) �̂�2
+ (𝑎𝑖(𝑥, 𝑡, 𝑈, ∇𝑈), 𝜑𝑗𝑥𝑖

)𝛺 + (𝑎(𝑥, 𝑡, 𝑈, ∇𝑈), 𝜑𝑗)𝛺= 

= (𝑔(𝑥, 𝑡, 𝑈), 𝜑𝑗)𝑆  ,      𝑗 = 1, 𝑛    ̅̅ ̅̅ ̅̅ ̅                                                        (10) 

and initial conditions 
(𝑈(𝑥, 𝑂) − 𝑢0, 𝜑𝑗)𝑊2

1(𝛺) = 0 

Here  �̂� 2(𝛺) – space of functions with scalar product 

(𝑢, 𝑣)�̂�2
= (𝑢, 𝑣)𝛺 + (𝑢, 𝑣)𝑠 , (𝑢, 𝑣)𝐾 = ∫ 𝑢𝑣𝑑𝑥

𝐾
 

If the system {𝜑𝑘} is orthonormal in the metric �̂�2(𝛺), then system (10) takes the form  

                     С̇𝑖
𝑛 = 𝑓𝑗

𝑛(𝑡, 𝐶1
𝑛, . . , 𝐶𝑛

𝑛),                                                                 (11) 

𝑤ℎ𝑒𝑟𝑒 𝑓𝑗
𝑛(𝑡, 𝐶1

2, . . , 𝐶𝑛
𝑛) = −(𝑎𝑖(𝑥, 𝑡, 𝑈, ∇𝑈), 𝜑𝑗𝑥𝑖

)𝛺 − (𝑎(𝑥, 𝑡, 𝑈, ∇𝑈), 𝜑𝑗)𝛺 + (𝑔(𝑥, 𝑡, 𝑈), 𝜑𝑗)𝑆  

Theoreme.. If conditions A-E are satisfied, then there is a unique generalized solution to problem (1) in the space 

𝑊2
1,1̃(𝑄𝑇). 

Proof. Condition A ensures the existence and continuity of the function 𝑓𝑗
𝑛(𝑡, 𝐶1

𝑛, . . , 𝐶𝑛
𝑛) with respect to 𝑡 and С𝑘

𝑛. 

Therefore, for the existence of at least one solution to problem (11) on the entire interval [𝑂, 𝑇]  , it is sufficient to 

know that all possible solutions are uniformly bounded.  This limitation follows from the a priori assessment 

max
0≤𝑡≤𝑇

 ‖𝑈(𝑥, 𝑡)‖
�̂�2

2 + ‖𝑈𝑡(𝑥, 𝑡)‖𝐿2(𝑜,𝑇,�̂�2)

2 + max
0≤𝑡≤𝑇

‖∇𝑈(𝑥, 𝑡)‖ �̂�2

2 ≤ 𝑁         (12) 

where is a constant that does not depend on 𝑛.  
From here we obtain the inequality [18-19] 

max
0≤𝑡≤𝑇

‖С𝑛(𝑡)‖2 = max
0≤𝑡≤𝑇

‖𝑈(𝑥, 𝑡)‖𝐿2(𝛺)

2 ≤ 𝑁,   С𝑛 = {𝐶𝑘
𝑛(𝑡)}𝑘=1

𝑛  

Let us now proceed to the limit transition with respect to 𝑛 → ∞. From estimate (12) it follows that there exists a 

function 𝑢(𝑥, 𝑡) ∈ 𝑊2
1,1̅̅ ̅̅ ̅̅ ̅(𝑄𝑇) and a subsequence 𝑈(𝑥, 𝑡) , such that the functions 𝑈(𝑥, 𝑡)converge to u(x,t) weakly 

in the norm 𝑊2
1,1̅̅ ̅̅ ̅̅ ̅(𝑄𝑇)  and the functions 𝑈𝑡  converge to 𝑢𝑡 in 𝐿2(𝑆𝑡). Since the embeddings 𝑊2

1,1̅̅ ̅̅ ̅̅ ̅(𝑄𝑇) ∈

𝐿2(𝑄𝑡), 𝐿2(𝑆𝑡) are compact, then 𝑈(𝑥, 𝑡) → 𝑢(𝑥, 𝑡)  strongly in 𝐿2(𝑆𝑡)  and in 𝐿2(𝑄𝑡). From this convergence it 

follows that 𝑈(𝑥, 𝑡) converges to 𝑢(𝑥, 𝑡) in 𝐿2(𝛺)  and in 𝐿2(𝑆) for almost all 𝑡 in [𝑂, 𝑇] and almost everywhere in 

𝑄𝑡𝑈𝑆𝑡. 

Further, from condition A it follows that the functions 𝑎𝑖(𝑥, 𝑡, 𝑈, ∇𝑈)  𝑖 = 1,2     converge weakly in 𝐿2(𝑄Т) and the 

elements 𝐴𝑖(𝑥, 𝑡)  of the space 𝐿2(𝑄Т) and the functions 𝑎(𝑥, 𝑡, 𝑈, ∇𝑈) converge weakly 𝐴(𝑥, 𝑡) ∈ 𝐿1(𝑄𝑇) in the 

space 𝐿1(𝑄𝑇). 

Let us denote by 𝑃𝑙   the set of linear combinations of the form  

𝑉(𝑥, 𝑡) = ∑ 𝑑𝑘

𝑙

𝑘=1

(𝑡)𝜑𝑘(𝑥) 

where 𝑑𝑘(𝑡) − are arbitrary smooth functions on the interval [𝑂, 𝑇]. Multiplying relations (10) by 𝑑𝑘(𝑡), summing 

over 𝑘 from 1 to 𝑙 and integrating from 0 to 𝑡, we find that for any function 𝑉(𝑥, 𝑡) ∈ Ре the equality  

∫ (𝑈𝑡 , 𝑉)�̂�2

𝑡

0

𝑑𝑡 + ∫ 𝑎𝑖(𝑥, 𝑡, 𝑈, ∇𝑈)𝑉𝑥𝑖
+

𝑄𝑡

𝑎(𝑥, 𝑡, 𝑈, ∇𝑈)𝑉]𝑑𝑥𝑑𝑡 == ∫ g(x, t, U)
St

𝑉𝑑𝑥𝑑𝑡 

                                                              (13) 

holds true. 

Let's move on to the limit in n→∞. As a result we get: 
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∫ (𝑈𝑡 , 𝑉)�̂�2
𝑑𝑡 + ∫ [𝐴𝑖(𝑥, 𝑡)𝑉𝑥𝑖

+ 𝐴(𝑥, 𝑡)𝑉]
𝑄𝑇

𝑑𝑥𝑑𝑡 = ∫ 𝑔(𝑥, 𝑡, 𝑢)
𝑆𝑇

𝑉𝑑𝑥𝑑𝑡
Т

0
                           (14) 

Since ⋃ 𝑃𝑒
∞
𝑙=1  is dense in 𝑊2

1,0(𝑄𝑇), then by performing the closure over 𝑉 in (14), we obtain that equality (14) is 

valid for any function 𝑉 ∈ 𝑊2
1,0(𝑄𝑇) .  

From equality (14) we obtain that the function 𝑈(𝑥, 𝑡) is the desired generalized solution. 
Let's prove the uniqueness of the solution.  

Let 𝑈1(𝑥, 𝑡), 𝑈2(𝑥, 𝑡)  be two solutions to problem (9), then their difference 𝑈1 − 𝑈2 satisfies the relation 

∫
𝜕(𝑈1 − 𝑈2)

𝜕𝑡
𝑄𝑡

(𝑈1 − 𝑈2)𝑑𝑥𝑑𝑡 + 𝑎0 ∫
𝜕(𝑈1 − 𝑈2)

𝜕𝑡
𝑆𝑡

(𝑈1 − 𝑈2)𝑑𝑥𝑑𝑡

+ ∫{[𝑎𝑖(𝑥, 𝑡, 𝑈1, ∇U1) − 𝑎𝑖(𝑥, 𝑡, 𝑈2, ∇U2)](𝑈1 − 𝑈2)𝑥𝑖

𝑄𝑇

+ [𝑎(𝑥, 𝑡, 𝑈1, ∇𝑈1) − 𝑎(𝑥, 𝑡, 𝑈2, ∇𝑈2)](𝑈1 − 𝑈2)}𝑑𝑥𝑑𝑡

= ∫ [𝑔(𝑥, 𝑡, 𝑈1) − 𝑔(𝑥, 𝑡, 𝑈2)]

𝑆𝑡

(𝑈1 − 𝑈2)𝑑𝑥𝑑𝑡 

Using conditions (5) and (7), we obtain 

∫(𝑈1 − 𝑈2)2

𝛺

𝑑𝑥 + 𝑎0 ∫ ∫(𝑈1 − 𝑈2)2

𝛺

𝑑𝑥 ≤ 2 𝑔0

𝑆

∫ ∫ (𝑈1 − 𝑈2)2

𝛺

𝑑𝑥𝑑𝑡

𝑆𝑇

 

 Therefore 𝑈1 ≡ 𝑈2. Thus, the theorem is proved. 

 

CONCLUSION 

In this paper, a generalized solution to the problem 

under consideration is defined in the space Н1,1̃(𝑄𝑇) 

when the dimension of the domain in spatial variables 
is equal to two. Further, the existence and uniqueness 
theorem of an approximate solution of the Bubnov-
Galerkin method for the considered non-classical 
parabolic problem with a divergent principal part is 
proved, when the boundary condition contains a time 
derivative of the desired function. 
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