
Volume 04 Issue 10-2024 69

American Journal Of Applied Science And Technology
(ISSN – 2771-2745)
VOLUME 04 ISSUE 10 Pages: 69-79

OCLC – 1121105677

Publisher: Oscar Publishing Services

Servi

ABSTRACT

With the emergence of the Internet, cyber-attacks and threats have become significant issues. Traditional manual

network monitoring and rule-based packet filtering methods have become labor-intensive and less effective in

combating attacks. Filtering packets based solely on payload and pattern matching is also inefficient. There is a need

for a dynamic model capable of learning packet filtering rules. This article proposes a packet filtering model using

Neural Networks. After developing the model classified with training and validation data, it can be utilized to support

dynamic packet filtering. The proposed model allows filtering packets not only based on static rules but also

considering IP packet attributes and rules learned by the model in advance. The model takes into account payloads

and other IP packet attributes for filtering. It can automatically update firewall rules to enhance security.

KEYWORDS

Cyber-attacks, Neural Networks, IP packets, firewall.

INTRODUCTION

People have become highly dependent on networks

for daily tasks. Computer networks are designed to

handle high traffic demands and meet real-time

constraints. Many technologies and components are

involved in transmitting or filtering packets from one

network device to another, with much of the process

traditionally managed manually. As a result, network

security issues have become significant because

packets or data pass through multiple components to

reach their destination. Modern network applications

must support network functions while network

 Research Article

DYNAMIC PACKET FILTERING USING MACHINE LEARNING METHODS

Submission Date: October 13, 2024, Accepted Date: October 18, 2024,

Published Date: October 23, 2024

Crossref doi: https://doi.org/10.37547/ajast/Volume04Issue10-11

Sarvar Norboboyevich Tashev
Shakhrisabz Branch of Tashkent Chemical-Technological Institute, Uzbekistan

Journal Website:

https://theusajournals.

com/index.php/ajast

Copyright: Original

content from this work

may be used under the

terms of the creative

commons attributes

4.0 licence.

https://theusajournals.com/
https://doi.org/10.37547/ajast/Volume04Issue10-11
https://doi.org/10.37547/ajast/Volume04Issue10-11
https://theusajournals.com/index.php/ajast
https://theusajournals.com/index.php/ajast
https://theusajournals.com/index.php/ajast
https://theusajournals.com/index.php/ajast

Volume 04 Issue 10-2024 70

American Journal Of Applied Science And Technology
(ISSN – 2771-2745)
VOLUME 04 ISSUE 10 Pages: 69-79

OCLC – 1121105677

Publisher: Oscar Publishing Services

Servi

functionalities are virtualized and control is

increasingly handled through software.

Network applications help operators manage and

monitor traffic, and improve network systems by

analyzing data. Numerous studies in the field of

networking have opened up opportunities for

autonomous networking applications, with network

security and packet filtering being one of the most

important applications.

This paper proposes a dynamic model that can learn

packet filtering rules. Neural Networks (NNs) are used

for the model, with a comparison made to Support

Vector Machines (SVM). The model can classify packets

that were not included during the training phase. The

proposed model enables packet filtering not only

based on static rules but also considering IP packet

attributes, allowing for the classification of legitimate

and malicious packets. Additionally, the model can

automatically update firewall rules in the IP tables.

The NN model was implemented using Python and the

Keras framework. The long-term goal is to improve the

efficiency of packet filtering. Two additional features

were introduced to enhance model accuracy:

1. Device-based packet filtering

2. Subnet-based packet filtering

A. Packet Filtering

Packet filtering allows a network operator to perform

actions (permit or block) based on the following

factors:

• Source address of the data

• Protocols used for transmission, such as

transport and/or application layer protocols

Most packet filtering systems do not base their

decisions on the content of the data, meaning they do

not make content-based decisions. Packet filtering

provides a certain level of protection for the entire

network when placed at strategic locations such as

gateway routers or edge devices, serving as a shield for

the network. This makes packet filtering crucial for

network security, regardless of the website's size, and

it is implemented transparently for end-users. Unlike

proxying, packet filtering does not require any special

software or configuration on the user machines, nor

does it need any special training or procedures for the

users.

1.1 Supervised Machine Learning

There are three main categories of Machine Learning

(ML) techniques: unsupervised learning, semi-

supervised learning, and supervised learning. The

primary goal of unsupervised learning techniques is to

identify patterns, structures, or knowledge in

unlabeled data. Semi-supervised learning occurs when

part of the data is labeled either during data collection

or by human experts. Labeled data plays a crucial role

in solving the problem. If the data is entirely labeled,

the technique is referred to as supervised learning.

Most supervised ML techniques follow training,

validation, and testing phases. Labeled data consisting

of the necessary attributes for packet filtering is used

for training, making supervised ML algorithms

applicable. The labeled features typically represent

business or problem variables deemed important by

experts for validating the data and testing the ML

model.

The proposed approach aims to address challenges

associated with manual network monitoring and rule-

based packet filtering, making the system more

Volume 04 Issue 10-2024 71

American Journal Of Applied Science And Technology
(ISSN – 2771-2745)
VOLUME 04 ISSUE 10 Pages: 69-79

OCLC – 1121105677

Publisher: Oscar Publishing Services

Servi

adaptable to evolving threats and reducing human

intervention.

1.2 Existing Packet Filtering Methods

Various techniques have been proposed for defining

firewall policies and mechanisms to verify filtering

rules, which help reduce dependencies. Researchers

have evaluated the performance of firewalls in

distributed systems in terms of transaction time and

latency. In [3], the authors developed a functional

model of firewalls, including an algebraic

representation for describing access rules and a formal

tool for configuring the firewall. The approach also

incorporates automatic anomaly detection for the

insertion and definition of rules.

In [4], a tool was introduced for writing and modifying

firewall rules. Firewalls function as logical separators,

restrictors, and analyzers, and their physical

implementation can differ across locations [5].

Typically, a firewall consists of a combination of

physical components such as routers, host computers,

or a mixture of routers, computers, and networks,

along with the necessary software [6]. The

configuration of the firewall depends on the security

policy, budget, and the overall functioning of the

object [7].

Deri described dynamic packet filtering using the

Counting Bloom Filter (CBF) [8]. Although CBF

addresses issues related to adding and removing

components and offers improvements over previous

static filtering processes, it still has limitations, such as

low memory utilization, limited rule capacity, and a

high false positive rate [9]. Modern applications like

Voice over IP (VoIP) and peer-to-peer (P2P) traffic

monitoring require dynamic packet filtering based on

attributes beyond simple VLAN/IP address/port

number characteristics. Common packet filtering

techniques such as the Berkeley Packet Filter (BPF) [9]

and router-based Application-Specific Integrated

Circuits (ASIC) filtering are not sufficient for these

applications.

Abeni et al. [10] proposed a solution for rapid and

compact packet filtering based on partitioning rule

databases and storing them in fast and compact Bloom

filters. A specialized clustering technique is used for

database partitioning, and the results showed that

even a large set of rules can be reduced to a minimal

number of segments and stored in compact Bloom

filters.

Overall, traditional packet filtering methods have

various shortcomings that need addressing, especially

in dynamic and high-performance network

environments. Modern approaches seek to overcome

these limitations by leveraging advanced data

structures, machine learning techniques, and adaptive

rule management strategies to enhance filtering

efficiency and network security.

METHODOLOGY

The proposed approach for dynamic packet filtering is

described as follows:

1. Packet Sniffer: A packet sniffer is developed

using Python's socket library. This tool captures

network packets in real-time. The captured data is then

stored in CSV format using the Pandas library, allowing

for easy manipulation and analysis of the packet

information.

2. Data Preprocessing: The collected data

undergoes preprocessing to convert categorical

information into numerical format using encoding

techniques. This step ensures that the data is suitable

for machine learning models, which typically require

numerical inputs.

Volume 04 Issue 10-2024 72

American Journal Of Applied Science And Technology
(ISSN – 2771-2745)
VOLUME 04 ISSUE 10 Pages: 69-79

OCLC – 1121105677

Publisher: Oscar Publishing Services

Servi

3. Model Construction: The preprocessed data is

used to train a neural network (NN) model. This model

is designed to learn from the patterns in the data and

effectively classify packets based on their attributes.

4. Model Application: Once the NN model is

trained, it is deployed for practical use. The

implemented model has the capability to dynamically

filter packets with high accuracy, distinguishing

between legitimate and potentially harmful packets

based on learned patterns.

This methodology aims to enhance the effectiveness of

packet filtering by leveraging machine learning

techniques, allowing for adaptive responses to

evolving network threats and improving overall

network security.

1. Diagram for Dynamic Packet Filtering Architecture

Packet Sniffing

A packet sniffer is a device or application that monitors

network traffic. It is also known as a packet analyzer or

network analyzer. These packets have their own

addresses and are intended for specific devices.

Sniffers can be constructed in two ways:

• Unfiltered Sniffer: This captures all available

packets on the network.

• Filtered Sniffer: This allows analysts to collect

packets that contain only selected data components【

11】.

Packet sniffing has various applications and is

commonly used for troubleshooting network issues. It

can identify misrouted packets or packets that should

not be present on the network. Unintended packets

for specific ports may indicate misconfiguration of one

or more nodes. A specialized data sniffing algorithm is

designed to collect and exchange packets on the

network, train the neural network (NN) model, and

identify malicious packets.

Data Preprocessing

In our approach, the preprocessed data is obtained in

two stages: data processing and normalization.

2.1 Data Processing

Raw data (in text, image, or video format) needs to be

converted into a suitable format for the machine

learning (ML) model to ensure high-quality data

preparation before applying ML techniques【12】.

This stage involves deleting incorrect, incomplete, and

inaccurate data, as well as replacing missing values.

This step checks the usability, confidentiality, and

integrity of the data. According to our approach, the

following methods have been accepted for data

processing:

• Smoothing: This method helps to eliminate

some noise in the dataset, thereby supporting the

identification of essential features.

• Aggregation: This method is used to combine

related data. This stage is critical, as the accuracy of

data depends on the quantity and quality of the

information.

• Discretization: This method is used to divide

continuous data into intervals. Discretization reduces

the size of the data.

• Converting Categorical Data to Numerical

Data: For example, converting IP addresses to

numerical data enhances accuracy and efficiency. For

instance, "127.0.0.1" is transformed to 127001.

This architecture serves as a foundation for dynamic

packet filtering by utilizing a structured approach to

Volume 04 Issue 10-2024 73

American Journal Of Applied Science And Technology
(ISSN – 2771-2745)
VOLUME 04 ISSUE 10 Pages: 69-79

OCLC – 1121105677

Publisher: Oscar Publishing Services

Servi

sniffing and processing network packets, ultimately

improving the identification and filtering of malicious

packets.

2.2 Normalization

Normalization is the process of rescaling or

transforming initial data to ensure that each feature

has an equal influence. This process addresses

significant data issues, such as dominant features and

outlier values, which can affect the performance of

machine learning (ML) algorithms during training【13

】.

In this research, the process of converting data to a

specified range (e.g., between 0 and 1 or between -1

and 1) is utilized. The minimum and maximum values of

the unnormalized data are applied to normalize the

data. This method ensures that the unnormalized data

conforms to a linear range of upper and lower bounds.

Typically, data is rescaled to fit within a range of either

0 to 1 or -1 to 1.

Data quality is crucial for training and predicting with

the model. Table I presents some sample packets

collected in real time by the packet sniffer, which are

then preprocessed (through smoothing, aggregation,

and discretization) to adapt them to the proposed

model. Only the attributes necessary for inputting into

the neural network (NN) model are filtered. All fields

with numerical values remain unchanged. Column E of

Table I shows the two possible actions for each packet:

allowing or blocking it for model training. The concept

of restrictions is illustrated using known malicious

sources and certain websites established on the server

for other reasons, meaning that packets matching

these attributes or originating from these sites are

blocked. For instance, for prototyping, we consider

malicious packets from specific YouTube or Twitter

channels. Additionally, some data that leads to the

detection of malicious software is accepted for the

model. Consequently, such packets are used in training

to prevent their re-entry into the system, which means

the action for these packets will be blocking. Data is

crucial for prediction, allowing the model to

understand which types of packets to permit or block.

Neural networks (NN) are a type of supervised

machine learning that utilizes labeled data. The NN

model is capable of analyzing complex and highly

uncertain relationships between input and output

variables, and it has been demonstrated that a network

with only one hidden layer but sufficient nodes can

represent any functionality. A simple NN architecture

consists of three layers: the input layer, the hidden

layer, and the output layer【14】. Each layer is

composed of nodes or neurons. Weights in the NN

represent the factors or coefficients that indicate the

magnitudes of the connections between neurons in

adjacent layers. Important features are identified by

retraining the NN to minimize the loss function

between predicted and actual results.

Keras Framework

Keras is a high-level Python library for neural networks

(NNs) that operates as a module for supervised

machine learning algorithms. NNs possess self-learning

and self-adaptive properties, making them suitable for

addressing some complex uncertain prediction

problems. Our approach utilizes Keras, which can be

based on either TensorFlow or Theano【15】. Keras

includes the following modules: activation functions,

layer modules, preprocessing modules, objective

function modules, and optimization technique

selection modules, among others. These modules

facilitate the straightforward creation of network

models and the tuning of essential parameters within

the NN.

Volume 04 Issue 10-2024 74

American Journal Of Applied Science And Technology
(ISSN – 2771-2745)
VOLUME 04 ISSUE 10 Pages: 69-79

OCLC – 1121105677

Publisher: Oscar Publishing Services

Servi

Activation Functions

In the proposed model, two types of activation

functions are utilized: ReLU and Softmax.

ReLU (Rectified Linear Unit)

ReLU is a widely used non-linear activation function in

neural networks. Mathematically, it is defined as

F(x)=max⁡(0,x)F(x) = \max(0, x)F(x)=max(0,x), where

xxx is the input to the neuron. The advantage of ReLU

is that all neuron cells may not activate simultaneously,

meaning if the result of a linear transformation is zero,

the neuron becomes inactive. As a result, ReLU is more

efficient compared to many other functions, as a small

number of neurons are active at any given time. If the

gradient value is zero, the weights adjusted during the

backpropagation phase of NN training remain

unchanged【16】.

Softmax

The Softmax function is a multi-dimensional

generalization of the logistic function and is a variant

of the sigmoid function that is often used in

conjunction with other functions. The sigmoid function

generates values between 0 and 1, allowing for

interpretation as the probability of a sample data point

belonging to a particular class. Unlike the sigmoid

function used for binary classifiers, the Softmax

function can solve multi-label classification problems.

It returns the probabilities for different classes for each

data point【16】.

In this research, only two outputs exist: allow or block.

Therefore, using the ReLU activation function in the

output layer is the best option. If we were to create a

network or model for multi-class classification, the

output layer of the NN would contain a number of

neurons corresponding to the target classes.

Neural Network Model Design

The neural network (NN) is constructed with an input

layer and four additional layers. Choosing the number

of nodes in the input layer is a challenging task that

usually requires the developer's knowledge and

several trials. If there are too many units in the hidden

layers, the training time becomes excessively long, the

error may not be optimal, and the phenomenon of

"overfitting" may occur. Therefore, experimental

evaluation may also be necessary to determine the

number of hidden layer elements for efficiency.

Input Layer

The input layer consists of six nodes, representing the

number of data inputs to the NN. These inputs include

the following attributes: source IP address, source port

number, destination port number, acknowledgment

number, sequence number, and data received with the

packet. Unlike many anomaly detection methods, the

proposed model does not utilize the destination IP

address, as the detection program is working on the

destination machine for identification purposes rather

than for other devices on the network. The proposed

model operates on the server to detect potential

anomalies. The activation function used in the input

layer is Softmax.

Hidden Layers

The NN model comprises three hidden layers:

1. First Hidden Layer: This layer has 64 nodes. The

six input values are mapped to these 64 values using

the ReLU activation function.

2. Second Hidden Layer: This layer has 256 nodes.

The 64 values obtained from the first hidden layer are

also mapped to these 256 nodes using ReLU.

Volume 04 Issue 10-2024 75

American Journal Of Applied Science And Technology
(ISSN – 2771-2745)
VOLUME 04 ISSUE 10 Pages: 69-79

OCLC – 1121105677

Publisher: Oscar Publishing Services

Servi

3. Third Hidden Layer: This layer has 512 nodes.

The 256 values obtained from the second hidden layer

are mapped to these 512 nodes using ReLU.

Output Layer

The output layer consists of two nodes, representing

the target attribute; hence the output will be either 1

or 0. If the packet is malicious, "1" is activated; if the

packet is legitimate, "0" is activated. The two values

are mapped from the 512 values of the third hidden

layer using the ReLU activation function.

The training dataset is collected from internet sources

and preprocessed by removing all unnecessary

attributes and noise to adapt it to our model. It is then

used in the training and validation processes to

evaluate the model's accuracy. The dataset is divided

into two parts: training data and validation data.

In this study, 80% of the total collected and

preprocessed dataset is used for training and

validation of the neural networks (NN), while 20% is

used for testing the model. Keras is utilized to create

the sequential NN. Similar to many other aspects of

machine learning, the data splitting ratio is determined

considering the target problem, the network, and all

relevant characteristics of the dataset.

This sequential model contains four layers: three

hidden layers and one output layer. The input layer

consists of six nodes, with one node assigned for each

attribute. The activation function used in the input

section is ReLU. The values obtained from the third

hidden layer are passed to the output layer, which

contains two nodes indicating whether the packet is

legitimate or malicious. These input layers are

transformed into binary values (0 and 1) using the

Softmax activation function in the output layer. Thus,

as a result of processing data through all layers, six

inputs correspond to two values. The accuracy

obtained during training and testing with 30 epochs is

equal to 100%.

Comparison with Support Vector Machine (SVM)

For comparison, a second model based on Support

Vector Machine (SVM) was developed. The accuracy

obtained using SVM for training was approximately

81.1%, and for testing, it was about 81%. When

comparing these two models (SVM and NN), the NN

demonstrates significantly higher accuracy, with a

training loss of approximately 1.2781×10−51.2781 \times

10^{-5}1.2781×10−5 and a testing loss of

1.1917×10−51.1917 \times 10^{-5}1.1917×10−5.

Consequently, the final model for dynamic packet

filtering was developed based on the NN architecture.

RESULTS

A. Packet Filtering

Packet filtering is supported by firewall techniques to

monitor both internal and external networks, and it is

implemented by detecting actions (allow or block) for

packets based on inspection and selected attributes. If

the model's result is not harmful, the packet is

considered safe and verified. High-level protocols and

their associated attributes, such as User Datagram

Protocol (UDP) and Transmission Control Protocol

(TCP), can also be taken into account. Figure 1 shows

the sample prediction results for packets. The

predictions were evaluated based on the following

criteria: size of the training dataset, NN design, number

of iterations, and accuracy. Additionally, we expanded

the implementation with two additional features:

1. Device-based packet filtering

2. Subnet-based packet filtering

Volume 04 Issue 10-2024 76

American Journal Of Applied Science And Technology
(ISSN – 2771-2745)
VOLUME 04 ISSUE 10 Pages: 69-79

OCLC – 1121105677

Publisher: Oscar Publishing Services

Servi

B. Device-based Packet Filtering

We used the same ML model to establish device-based

packet filtering since each digital device has a unique

identifier and address known as a MAC address. MAC

filtering is a security solution based on access control.

The MAC address assigned to each device is a 48-bit

address used to evaluate whether it has permission to

connect to the network.

The main action of the device-based packet filtering

technique is to identify the targeted malicious MAC

address and enhance protection against harmful

packets by adding it to automatic firewall rules. This is

accomplished by comparing the MAC address to a pre-

defined list of addresses. The MAC address of the

device is obtained through Address Resolution

Protocol (ARP) table acquisition and is automatically

added to the firewall, where the source and

destination IP addresses of harmful packet flows are

identified along with the device's MAC address.

Acquiring the ARP table implies mapping network

addresses to MAC addresses, where the ML model

retrieves information regarding the device's MAC

address. Once a harmful packet is identified, filtering is

applied, and the MAC address is added to the

automatic firewall rules, ensuring continuous

protection from harmful packets.

The following algorithmic process is used:

f = open("FilteringRules.txt", "a")

if "ether" in data or "at" in data:

 malMac = data.split("at")[1].split(" [ether]")[0]

 ruleMAC = "iptables -I INPUT -s " + str(s_addr) + " -p tcp --dport " + str(dest_port)

+ " -m mac --mac-source " + str(malMac) + " -j DROP"

 os.popen(ruleMAC)

 f.write(ruleMAC + "\n")

if malMac == "":

 ruleIP = "iptables -I INPUT -s " + str(s_addr) + " -p tcp --dport " + str(dest_port) +

" -j DROP"

 os.popen(ruleIP)

 f.write(ruleIP + "\n")

f.close()

Figure 3(a) displays the results after executing our

algorithm, showing that the harmful packets were

successfully detected by the model. Thus, after the

firewall was updated, connection requests were

denied access to the device. The acquisition of the MAC

address and its submission to the firewall rule occurs

automatically in the background, as depicted in Figure

3(b), which compares the firewall and modifications,

indicating that the MAC address has been updated in

the firewall section. After detection and filtering are

applied, harmful packets, as previously mentioned, do

not enter this device. The instantaneous screenshots

are provided in Figure 3, showing (a) the results of

device-based packet filtering and (b) the updates to

the MAC address in the firewall section.

(a)

C: /Desktop/packet# echo “hello” | rc -cu localhost 8080

Localhost [127.0.0.1] (?) : Connection refused

C: /Desktop/packet#

Volume 04 Issue 10-2024 77

American Journal Of Applied Science And Technology
(ISSN – 2771-2745)
VOLUME 04 ISSUE 10 Pages: 69-79

OCLC – 1121105677

Publisher: Oscar Publishing Services

Servi

(b)

C: /Desktop/packet# iptables -S

-P INPUT ACCEPT

-P FORWARD ACCEPT

-P OUTPUT ACCEPT

-A INPUT -s 127.0.0.1/32 -p tcp -m tcp --dport 34860 -m mac --mac-source 00:50:56:e0:f6:fd

-j DROP

-A INPUT -s 127.0.0.1/32 -p tcp -m tcp --dport 8080 -m mac --mac-source 00:50:56:e0:f6:fd

-j DROP

C: /Desktop/packet#

C. Subnet-based Packet Filtering

In the initial approach, filtering was based on individual

packets, using various attributes of the packets to

determine their safety. Expanding this initial approach,

a logical way to support driver access to the network

or subnet becomes evident. Allowing a driver to enter

the network can lead to inefficiencies in packet-based

filtering. Thus, MAC address-based filtering is

employed, as devices within a subnet are associated via

their MAC addresses. By combining these two

scenarios, the system is protected from both external

threats and hackers within the network.

This additional development entails blocking the driver

from the network or subnet because well-monitored

environments constantly prevent hackers from

entering the system. In this scenario, an algorithm is

employed to secure the driver's safe packets,

identifying the IP address from IPv4 packets and

implementing the IP table rules derived from the

packets. This method is designed to block all packets

from subnets identified against the target. Each task of

this process is programmed, allowing for automatic

detection and implementation of IP table rules.

The scripting code illustrates the method for filtering

packets based on subnet:

subnet = os.popen("""ifconfig | grep "inet " | grep -v "127.0.0.1" | awk '{print $2}'""")

127.0.0.1 is excluded, as it is the address where the program is running.

subnet = subnet.read()

subnet = subnet.split(".")

subnet = subnet[0] + "." + subnet[1]

if result == 0:

 continue

else:

 if s_addr.startswith(subnet):

 continue

 else:

 subnetBlock = str(s_addr).split(".")

 subnetBlock = subnetBlock[0] + "." + subnetBlock[1] + ".0.0/16"

 os.popen("iptables -A INPUT -s" + subnetBlock + " -j DROP")

 print("Blocking the subnet location: " + subnetBlock)

If the NN predicts that a packet is not harmful, no

action is taken. However, if the packet is classified as

harmful, the common practice for network attacks is to

set the subnet mask to 255.255.0.0. The attacker's IP

address is extracted from the IP packet. Now, with

both the IP address and subnet mask available, a

Volume 04 Issue 10-2024 78

American Journal Of Applied Science And Technology
(ISSN – 2771-2745)
VOLUME 04 ISSUE 10 Pages: 69-79

OCLC – 1121105677

Publisher: Oscar Publishing Services

Servi

bitwise AND operation is performed between the

subnet mask and IP address to determine the device's

subnet. Subsequently, an IP rule is created to block all

packets routed from the computed subnet. This rule is

applied to the system's IP table using the OS module.

Figure 2. Results of the source connecting the specified address

Figure 3. Subnet IP table rule for blocking it.

Figures 2 and 3 show partial results of the method for

filtering packets by subnet. Two machines from two

different networks were used for the experiment.

Figure 2 shows the source attempting to send a

malicious packet, but the connection is refused. Figure

3 displays the operational address of the filtering tool.

Once deemed malicious, you can observe the actions

taken before and after creating IP table rules and

blocking the subnet. Thus, Figure 3 illustrates the

creation of an IP table rule to identify and block the

malicious subnet.

CONCLUSION

This article discusses a dynamic approach to packet

filtering using neural networks to support defense

against attacks. This model is capable of dynamically

blocking attacks. A data sniffing algorithm was

employed to gather a real-time updated dataset for

testing the model and analyzing its performance. We

successfully implemented the dynamic packet filtering

approach and introduced two additional features,

namely device-based packet filtering and subnet-based

packet filtering. These additional features assist in

mitigating attacks from both internal and external

sources. The model can be expanded to incorporate

capabilities for detecting various anomalies. It is also

necessary to retrain the models frequently and over

extended periods. Future research should focus on

incremental learning and continuous learning.

REFERENCES

1. Gulomov Sh.R. Types of malicious traffic in the

network and their detection. Multidisciplinary

Volume 04 Issue 10-2024 79

American Journal Of Applied Science And Technology
(ISSN – 2771-2745)
VOLUME 04 ISSUE 10 Pages: 69-79

OCLC – 1121105677

Publisher: Oscar Publishing Services

Servi

Scientific Journal. December, Issue 24 | 2023, pp.

424-432.

2. SN Tashev, AG Ganiev The Role of “Imagination” in

the Process of “Creative Thinking” Developing

Students' “Imagination” and “Creative Thinking”

Skills in Teaching Physics. Annals of the Romanian

Society for Cell Biology, 2021/3/6, pp. 633-642.

3. SN Tashev THE ROLE OF “IMAGINATION” IN THE

PROCESS OF “CREATIVE THINKING”, DEVELOPING

STUDENTS’ “IMAGINATION” AND “CREATIVE

THINKING” SKILLS IN TEACHING PHYSICS

PSYCHOLOGY AND EDUCATION, pp. 3569-3575.

4. Y.B. Karamatovich, T.S. Norboboevich, N.I.

Ibrohimovich. Verification of the pocket filtering

based on method of verification on the model. 2019

International Conference on Information Science

and Communications Technologies (ICISCT).

5. J. Ning et al., “Pine: Enabling privacy-preserving

deep packet inspection on TLS with rule-hiding and

fast connection establishment,” in Proc. Eur. Symp.

Res. Comput. Secur., 2020, pp. 3–22.

