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ABSTRACT 

With the emergence of the Internet, cyber-attacks and threats have become significant issues. Traditional manual 

network monitoring and rule-based packet filtering methods have become labor-intensive and less effective in 

combating attacks. Filtering packets based solely on payload and pattern matching is also inefficient. There is a need 

for a dynamic model capable of learning packet filtering rules. This article proposes a packet filtering model using 

Neural Networks. After developing the model classified with training and validation data, it can be utilized to support 

dynamic packet filtering. The proposed model allows filtering packets not only based on static rules but also 

considering IP packet attributes and rules learned by the model in advance. The model takes into account payloads 

and other IP packet attributes for filtering. It can automatically update firewall rules to enhance security. 
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INTRODUCTION

People have become highly dependent on networks 

for daily tasks. Computer networks are designed to 

handle high traffic demands and meet real-time 

constraints. Many technologies and components are 

involved in transmitting or filtering packets from one 

network device to another, with much of the process 

traditionally managed manually. As a result, network 

security issues have become significant because 

packets or data pass through multiple components to 

reach their destination. Modern network applications 

must support network functions while network 
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functionalities are virtualized and control is 

increasingly handled through software. 

Network applications help operators manage and 

monitor traffic, and improve network systems by 

analyzing data. Numerous studies in the field of 

networking have opened up opportunities for 

autonomous networking applications, with network 

security and packet filtering being one of the most 

important applications. 

This paper proposes a dynamic model that can learn 

packet filtering rules. Neural Networks (NNs) are used 

for the model, with a comparison made to Support 

Vector Machines (SVM). The model can classify packets 

that were not included during the training phase. The 

proposed model enables packet filtering not only 

based on static rules but also considering IP packet 

attributes, allowing for the classification of legitimate 

and malicious packets. Additionally, the model can 

automatically update firewall rules in the IP tables. 

The NN model was implemented using Python and the 

Keras framework. The long-term goal is to improve the 

efficiency of packet filtering. Two additional features 

were introduced to enhance model accuracy: 

1. Device-based packet filtering 

2. Subnet-based packet filtering 

A. Packet Filtering 

Packet filtering allows a network operator to perform 

actions (permit or block) based on the following 

factors: 

• Source address of the data 

• Protocols used for transmission, such as 

transport and/or application layer protocols 

Most packet filtering systems do not base their 

decisions on the content of the data, meaning they do 

not make content-based decisions. Packet filtering 

provides a certain level of protection for the entire 

network when placed at strategic locations such as 

gateway routers or edge devices, serving as a shield for 

the network. This makes packet filtering crucial for 

network security, regardless of the website's size, and 

it is implemented transparently for end-users. Unlike 

proxying, packet filtering does not require any special 

software or configuration on the user machines, nor 

does it need any special training or procedures for the 

users. 

1.1 Supervised Machine Learning 

There are three main categories of Machine Learning 

(ML) techniques: unsupervised learning, semi-

supervised learning, and supervised learning. The 

primary goal of unsupervised learning techniques is to 

identify patterns, structures, or knowledge in 

unlabeled data. Semi-supervised learning occurs when 

part of the data is labeled either during data collection 

or by human experts. Labeled data plays a crucial role 

in solving the problem. If the data is entirely labeled, 

the technique is referred to as supervised learning. 

Most supervised ML techniques follow training, 

validation, and testing phases. Labeled data consisting 

of the necessary attributes for packet filtering is used 

for training, making supervised ML algorithms 

applicable. The labeled features typically represent 

business or problem variables deemed important by 

experts for validating the data and testing the ML 

model. 

The proposed approach aims to address challenges 

associated with manual network monitoring and rule-

based packet filtering, making the system more 
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adaptable to evolving threats and reducing human 

intervention. 

1.2 Existing Packet Filtering Methods 

Various techniques have been proposed for defining 

firewall policies and mechanisms to verify filtering 

rules, which help reduce dependencies. Researchers 

have evaluated the performance of firewalls in 

distributed systems in terms of transaction time and 

latency. In [3], the authors developed a functional 

model of firewalls, including an algebraic 

representation for describing access rules and a formal 

tool for configuring the firewall. The approach also 

incorporates automatic anomaly detection for the 

insertion and definition of rules. 

In [4], a tool was introduced for writing and modifying 

firewall rules. Firewalls function as logical separators, 

restrictors, and analyzers, and their physical 

implementation can differ across locations [5]. 

Typically, a firewall consists of a combination of 

physical components such as routers, host computers, 

or a mixture of routers, computers, and networks, 

along with the necessary software [6]. The 

configuration of the firewall depends on the security 

policy, budget, and the overall functioning of the 

object [7]. 

Deri described dynamic packet filtering using the 

Counting Bloom Filter (CBF) [8]. Although CBF 

addresses issues related to adding and removing 

components and offers improvements over previous 

static filtering processes, it still has limitations, such as 

low memory utilization, limited rule capacity, and a 

high false positive rate [9]. Modern applications like 

Voice over IP (VoIP) and peer-to-peer (P2P) traffic 

monitoring require dynamic packet filtering based on 

attributes beyond simple VLAN/IP address/port 

number characteristics. Common packet filtering 

techniques such as the Berkeley Packet Filter (BPF) [9] 

and router-based Application-Specific Integrated 

Circuits (ASIC) filtering are not sufficient for these 

applications. 

Abeni et al. [10] proposed a solution for rapid and 

compact packet filtering based on partitioning rule 

databases and storing them in fast and compact Bloom 

filters. A specialized clustering technique is used for 

database partitioning, and the results showed that 

even a large set of rules can be reduced to a minimal 

number of segments and stored in compact Bloom 

filters. 

Overall, traditional packet filtering methods have 

various shortcomings that need addressing, especially 

in dynamic and high-performance network 

environments. Modern approaches seek to overcome 

these limitations by leveraging advanced data 

structures, machine learning techniques, and adaptive 

rule management strategies to enhance filtering 

efficiency and network security. 

METHODOLOGY 

The proposed approach for dynamic packet filtering is 

described as follows: 

1. Packet Sniffer: A packet sniffer is developed 

using Python's socket library. This tool captures 

network packets in real-time. The captured data is then 

stored in CSV format using the Pandas library, allowing 

for easy manipulation and analysis of the packet 

information. 

2. Data Preprocessing: The collected data 

undergoes preprocessing to convert categorical 

information into numerical format using encoding 

techniques. This step ensures that the data is suitable 

for machine learning models, which typically require 

numerical inputs. 
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3. Model Construction: The preprocessed data is 

used to train a neural network (NN) model. This model 

is designed to learn from the patterns in the data and 

effectively classify packets based on their attributes. 

4. Model Application: Once the NN model is 

trained, it is deployed for practical use. The 

implemented model has the capability to dynamically 

filter packets with high accuracy, distinguishing 

between legitimate and potentially harmful packets 

based on learned patterns. 

This methodology aims to enhance the effectiveness of 

packet filtering by leveraging machine learning 

techniques, allowing for adaptive responses to 

evolving network threats and improving overall 

network security. 

1. Diagram for Dynamic Packet Filtering Architecture 

Packet Sniffing 

A packet sniffer is a device or application that monitors 

network traffic. It is also known as a packet analyzer or 

network analyzer. These packets have their own 

addresses and are intended for specific devices. 

Sniffers can be constructed in two ways: 

• Unfiltered Sniffer: This captures all available 

packets on the network. 

• Filtered Sniffer: This allows analysts to collect 

packets that contain only selected data components【

11】. 

Packet sniffing has various applications and is 

commonly used for troubleshooting network issues. It 

can identify misrouted packets or packets that should 

not be present on the network. Unintended packets 

for specific ports may indicate misconfiguration of one 

or more nodes. A specialized data sniffing algorithm is 

designed to collect and exchange packets on the 

network, train the neural network (NN) model, and 

identify malicious packets. 

Data Preprocessing 

In our approach, the preprocessed data is obtained in 

two stages: data processing and normalization. 

2.1 Data Processing 

Raw data (in text, image, or video format) needs to be 

converted into a suitable format for the machine 

learning (ML) model to ensure high-quality data 

preparation before applying ML techniques【12】. 

This stage involves deleting incorrect, incomplete, and 

inaccurate data, as well as replacing missing values. 

This step checks the usability, confidentiality, and 

integrity of the data. According to our approach, the 

following methods have been accepted for data 

processing: 

• Smoothing: This method helps to eliminate 

some noise in the dataset, thereby supporting the 

identification of essential features. 

• Aggregation: This method is used to combine 

related data. This stage is critical, as the accuracy of 

data depends on the quantity and quality of the 

information. 

• Discretization: This method is used to divide 

continuous data into intervals. Discretization reduces 

the size of the data. 

• Converting Categorical Data to Numerical 

Data: For example, converting IP addresses to 

numerical data enhances accuracy and efficiency. For 

instance, "127.0.0.1" is transformed to 127001. 

This architecture serves as a foundation for dynamic 

packet filtering by utilizing a structured approach to 
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sniffing and processing network packets, ultimately 

improving the identification and filtering of malicious 

packets. 

2.2 Normalization 

Normalization is the process of rescaling or 

transforming initial data to ensure that each feature 

has an equal influence. This process addresses 

significant data issues, such as dominant features and 

outlier values, which can affect the performance of 

machine learning (ML) algorithms during training【13

】. 

In this research, the process of converting data to a 

specified range (e.g., between 0 and 1 or between -1 

and 1) is utilized. The minimum and maximum values of 

the unnormalized data are applied to normalize the 

data. This method ensures that the unnormalized data 

conforms to a linear range of upper and lower bounds. 

Typically, data is rescaled to fit within a range of either 

0 to 1 or -1 to 1. 

Data quality is crucial for training and predicting with 

the model. Table I presents some sample packets 

collected in real time by the packet sniffer, which are 

then preprocessed (through smoothing, aggregation, 

and discretization) to adapt them to the proposed 

model. Only the attributes necessary for inputting into 

the neural network (NN) model are filtered. All fields 

with numerical values remain unchanged. Column E of 

Table I shows the two possible actions for each packet: 

allowing or blocking it for model training. The concept 

of restrictions is illustrated using known malicious 

sources and certain websites established on the server 

for other reasons, meaning that packets matching 

these attributes or originating from these sites are 

blocked. For instance, for prototyping, we consider 

malicious packets from specific YouTube or Twitter 

channels. Additionally, some data that leads to the 

detection of malicious software is accepted for the 

model. Consequently, such packets are used in training 

to prevent their re-entry into the system, which means 

the action for these packets will be blocking. Data is 

crucial for prediction, allowing the model to 

understand which types of packets to permit or block. 

Neural networks (NN) are a type of supervised 

machine learning that utilizes labeled data. The NN 

model is capable of analyzing complex and highly 

uncertain relationships between input and output 

variables, and it has been demonstrated that a network 

with only one hidden layer but sufficient nodes can 

represent any functionality. A simple NN architecture 

consists of three layers: the input layer, the hidden 

layer, and the output layer【14】. Each layer is 

composed of nodes or neurons. Weights in the NN 

represent the factors or coefficients that indicate the 

magnitudes of the connections between neurons in 

adjacent layers. Important features are identified by 

retraining the NN to minimize the loss function 

between predicted and actual results. 

Keras Framework 

Keras is a high-level Python library for neural networks 

(NNs) that operates as a module for supervised 

machine learning algorithms. NNs possess self-learning 

and self-adaptive properties, making them suitable for 

addressing some complex uncertain prediction 

problems. Our approach utilizes Keras, which can be 

based on either TensorFlow or Theano【15】. Keras 

includes the following modules: activation functions, 

layer modules, preprocessing modules, objective 

function modules, and optimization technique 

selection modules, among others. These modules 

facilitate the straightforward creation of network 

models and the tuning of essential parameters within 

the NN. 
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Activation Functions 

In the proposed model, two types of activation 

functions are utilized: ReLU and Softmax. 

ReLU (Rectified Linear Unit) 

ReLU is a widely used non-linear activation function in 

neural networks. Mathematically, it is defined as 

F(x)=max⁡(0,x)F(x) = \max(0, x)F(x)=max(0,x), where 

xxx is the input to the neuron. The advantage of ReLU 

is that all neuron cells may not activate simultaneously, 

meaning if the result of a linear transformation is zero, 

the neuron becomes inactive. As a result, ReLU is more 

efficient compared to many other functions, as a small 

number of neurons are active at any given time. If the 

gradient value is zero, the weights adjusted during the 

backpropagation phase of NN training remain 

unchanged【16】. 

Softmax 

The Softmax function is a multi-dimensional 

generalization of the logistic function and is a variant 

of the sigmoid function that is often used in 

conjunction with other functions. The sigmoid function 

generates values between 0 and 1, allowing for 

interpretation as the probability of a sample data point 

belonging to a particular class. Unlike the sigmoid 

function used for binary classifiers, the Softmax 

function can solve multi-label classification problems. 

It returns the probabilities for different classes for each 

data point【16】. 

In this research, only two outputs exist: allow or block. 

Therefore, using the ReLU activation function in the 

output layer is the best option. If we were to create a 

network or model for multi-class classification, the 

output layer of the NN would contain a number of 

neurons corresponding to the target classes. 

Neural Network Model Design 

The neural network (NN) is constructed with an input 

layer and four additional layers. Choosing the number 

of nodes in the input layer is a challenging task that 

usually requires the developer's knowledge and 

several trials. If there are too many units in the hidden 

layers, the training time becomes excessively long, the 

error may not be optimal, and the phenomenon of 

"overfitting" may occur. Therefore, experimental 

evaluation may also be necessary to determine the 

number of hidden layer elements for efficiency. 

Input Layer 

The input layer consists of six nodes, representing the 

number of data inputs to the NN. These inputs include 

the following attributes: source IP address, source port 

number, destination port number, acknowledgment 

number, sequence number, and data received with the 

packet. Unlike many anomaly detection methods, the 

proposed model does not utilize the destination IP 

address, as the detection program is working on the 

destination machine for identification purposes rather 

than for other devices on the network. The proposed 

model operates on the server to detect potential 

anomalies. The activation function used in the input 

layer is Softmax. 

Hidden Layers 

The NN model comprises three hidden layers: 

1. First Hidden Layer: This layer has 64 nodes. The 

six input values are mapped to these 64 values using 

the ReLU activation function. 

2. Second Hidden Layer: This layer has 256 nodes. 

The 64 values obtained from the first hidden layer are 

also mapped to these 256 nodes using ReLU. 
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3. Third Hidden Layer: This layer has 512 nodes. 

The 256 values obtained from the second hidden layer 

are mapped to these 512 nodes using ReLU. 

Output Layer 

The output layer consists of two nodes, representing 

the target attribute; hence the output will be either 1 

or 0. If the packet is malicious, "1" is activated; if the 

packet is legitimate, "0" is activated. The two values 

are mapped from the 512 values of the third hidden 

layer using the ReLU activation function. 

The training dataset is collected from internet sources 

and preprocessed by removing all unnecessary 

attributes and noise to adapt it to our model. It is then 

used in the training and validation processes to 

evaluate the model's accuracy. The dataset is divided 

into two parts: training data and validation data. 

In this study, 80% of the total collected and 

preprocessed dataset is used for training and 

validation of the neural networks (NN), while 20% is 

used for testing the model. Keras is utilized to create 

the sequential NN. Similar to many other aspects of 

machine learning, the data splitting ratio is determined 

considering the target problem, the network, and all 

relevant characteristics of the dataset. 

This sequential model contains four layers: three 

hidden layers and one output layer. The input layer 

consists of six nodes, with one node assigned for each 

attribute. The activation function used in the input 

section is ReLU. The values obtained from the third 

hidden layer are passed to the output layer, which 

contains two nodes indicating whether the packet is 

legitimate or malicious. These input layers are 

transformed into binary values (0 and 1) using the 

Softmax activation function in the output layer. Thus, 

as a result of processing data through all layers, six 

inputs correspond to two values. The accuracy 

obtained during training and testing with 30 epochs is 

equal to 100%. 

Comparison with Support Vector Machine (SVM) 

For comparison, a second model based on Support 

Vector Machine (SVM) was developed. The accuracy 

obtained using SVM for training was approximately 

81.1%, and for testing, it was about 81%. When 

comparing these two models (SVM and NN), the NN 

demonstrates significantly higher accuracy, with a 

training loss of approximately 1.2781×10−51.2781 \times 

10^{-5}1.2781×10−5 and a testing loss of 

1.1917×10−51.1917 \times 10^{-5}1.1917×10−5. 

Consequently, the final model for dynamic packet 

filtering was developed based on the NN architecture. 

RESULTS 

A. Packet Filtering 

Packet filtering is supported by firewall techniques to 

monitor both internal and external networks, and it is 

implemented by detecting actions (allow or block) for 

packets based on inspection and selected attributes. If 

the model's result is not harmful, the packet is 

considered safe and verified. High-level protocols and 

their associated attributes, such as User Datagram 

Protocol (UDP) and Transmission Control Protocol 

(TCP), can also be taken into account. Figure 1 shows 

the sample prediction results for packets. The 

predictions were evaluated based on the following 

criteria: size of the training dataset, NN design, number 

of iterations, and accuracy. Additionally, we expanded 

the implementation with two additional features: 

1. Device-based packet filtering 

2. Subnet-based packet filtering 
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B. Device-based Packet Filtering 

We used the same ML model to establish device-based 

packet filtering since each digital device has a unique 

identifier and address known as a MAC address. MAC 

filtering is a security solution based on access control. 

The MAC address assigned to each device is a 48-bit 

address used to evaluate whether it has permission to 

connect to the network. 

The main action of the device-based packet filtering 

technique is to identify the targeted malicious MAC 

address and enhance protection against harmful 

packets by adding it to automatic firewall rules. This is 

accomplished by comparing the MAC address to a pre-

defined list of addresses. The MAC address of the 

device is obtained through Address Resolution 

Protocol (ARP) table acquisition and is automatically 

added to the firewall, where the source and 

destination IP addresses of harmful packet flows are 

identified along with the device's MAC address. 

Acquiring the ARP table implies mapping network 

addresses to MAC addresses, where the ML model 

retrieves information regarding the device's MAC 

address. Once a harmful packet is identified, filtering is 

applied, and the MAC address is added to the 

automatic firewall rules, ensuring continuous 

protection from harmful packets. 

The following algorithmic process is used: 

f = open("FilteringRules.txt", "a") 

if "ether" in data or "at" in data: 

    malMac = data.split("at")[1].split(" [ether]")[0] 

    ruleMAC = "iptables -I INPUT -s " + str(s_addr) + " -p tcp --dport " + str(dest_port) 

+ " -m mac --mac-source " + str(malMac) + " -j DROP" 

    os.popen(ruleMAC) 

    f.write(ruleMAC + "\n") 

if malMac == "": 

    ruleIP = "iptables -I INPUT -s " + str(s_addr) + " -p tcp --dport " + str(dest_port) + 

" -j DROP" 

    os.popen(ruleIP) 

    f.write(ruleIP + "\n") 

f.close() 

 

Figure 3(a) displays the results after executing our 

algorithm, showing that the harmful packets were 

successfully detected by the model. Thus, after the 

firewall was updated, connection requests were 

denied access to the device. The acquisition of the MAC 

address and its submission to the firewall rule occurs 

automatically in the background, as depicted in Figure 

3(b), which compares the firewall and modifications, 

indicating that the MAC address has been updated in 

the firewall section. After detection and filtering are 

applied, harmful packets, as previously mentioned, do 

not enter this device. The instantaneous screenshots 

are provided in Figure 3, showing (a) the results of 

device-based packet filtering and (b) the updates to 

the MAC address in the firewall section. 

(a) 

C: /Desktop/packet# echo “hello” | rc -cu localhost 8080  

Localhost [127.0.0.1] (?) : Connection refused  

C: /Desktop/packet#  
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(b) 

C: /Desktop/packet# iptables -S  

-P INPUT ACCEPT  

-P FORWARD ACCEPT  

-P OUTPUT ACCEPT  

-A INPUT -s 127.0.0.1/32 -p tcp -m tcp --dport 34860 -m mac --mac-source 00:50:56:e0:f6:fd 

-j DROP 

-A INPUT -s 127.0.0.1/32 -p tcp -m tcp --dport 8080 -m mac --mac-source 00:50:56:e0:f6:fd 

-j DROP  

C: /Desktop/packet#  

 

C. Subnet-based Packet Filtering 

In the initial approach, filtering was based on individual 

packets, using various attributes of the packets to 

determine their safety. Expanding this initial approach, 

a logical way to support driver access to the network 

or subnet becomes evident. Allowing a driver to enter 

the network can lead to inefficiencies in packet-based 

filtering. Thus, MAC address-based filtering is 

employed, as devices within a subnet are associated via 

their MAC addresses. By combining these two 

scenarios, the system is protected from both external 

threats and hackers within the network. 

This additional development entails blocking the driver 

from the network or subnet because well-monitored 

environments constantly prevent hackers from 

entering the system. In this scenario, an algorithm is 

employed to secure the driver's safe packets, 

identifying the IP address from IPv4 packets and 

implementing the IP table rules derived from the 

packets. This method is designed to block all packets 

from subnets identified against the target. Each task of 

this process is programmed, allowing for automatic 

detection and implementation of IP table rules. 

The scripting code illustrates the method for filtering 

packets based on subnet: 

subnet = os.popen("""ifconfig | grep "inet " | grep -v "127.0.0.1" | awk '{print $2}'""") 

# 127.0.0.1 is excluded, as it is the address where the program is running.  

subnet = subnet.read() 

subnet = subnet.split(".") 

subnet = subnet[0] + "." + subnet[1] 

if result == 0: 

    continue 

else: 

    if s_addr.startswith(subnet): 

        continue 

    else: 

        subnetBlock = str(s_addr).split(".") 

        subnetBlock = subnetBlock[0] + "." + subnetBlock[1] + ".0.0/16" 

        os.popen("iptables -A INPUT -s" + subnetBlock + " -j DROP") 

        print("Blocking the subnet location: " + subnetBlock) 

 

If the NN predicts that a packet is not harmful, no 

action is taken. However, if the packet is classified as 

harmful, the common practice for network attacks is to 

set the subnet mask to 255.255.0.0. The attacker's IP 

address is extracted from the IP packet. Now, with 

both the IP address and subnet mask available, a 
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bitwise AND operation is performed between the 

subnet mask and IP address to determine the device's 

subnet. Subsequently, an IP rule is created to block all 

packets routed from the computed subnet. This rule is 

applied to the system's IP table using the OS module. 

 

Figure 2. Results of the source connecting the specified address 

 

Figure 3. Subnet IP table rule for blocking it. 

Figures 2 and 3 show partial results of the method for 

filtering packets by subnet. Two machines from two 

different networks were used for the experiment. 

Figure 2 shows the source attempting to send a 

malicious packet, but the connection is refused. Figure 

3 displays the operational address of the filtering tool. 

Once deemed malicious, you can observe the actions 

taken before and after creating IP table rules and 

blocking the subnet. Thus, Figure 3 illustrates the 

creation of an IP table rule to identify and block the 

malicious subnet. 

CONCLUSION 

This article discusses a dynamic approach to packet 

filtering using neural networks to support defense 

against attacks. This model is capable of dynamically 

blocking attacks. A data sniffing algorithm was 

employed to gather a real-time updated dataset for 

testing the model and analyzing its performance. We 

successfully implemented the dynamic packet filtering 

approach and introduced two additional features, 

namely device-based packet filtering and subnet-based 

packet filtering. These additional features assist in 

mitigating attacks from both internal and external 

sources. The model can be expanded to incorporate 

capabilities for detecting various anomalies. It is also 

necessary to retrain the models frequently and over 

extended periods. Future research should focus on 

incremental learning and continuous learning. 
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