

Fractal-Geomorphological Controls On Soil Cover Formation, Particle Size Distribution, And Agroecological Functioning Across River Basin Landscapes

Dr. Aleksandr M. Petrov

Department of Physical Geography and Soil Science, National University of Environmental Studies, Almaty, Kazakhstan

Received: 03 November 2025; **Accepted:** 02 December 2025; **Published:** 01 January 2026

Abstract: Soil cover formation within river basin landscapes represents the integrated outcome of sedimentary processes, geomorphological evolution, hydrological regimes, and long-term anthropogenic management. Contemporary soil science increasingly recognizes that soil properties cannot be fully understood without accounting for spatial heterogeneity generated by microrelief, river terraces, floodplain dynamics, and land reclamation practices. This study presents a comprehensive theoretical and analytical synthesis of soil particle size distribution, soil cover ecological state, and agrophysical functioning across diverse geomorphological settings at the river basin scale. Drawing strictly on the referenced scholarly corpus, the article elaborates the conceptual significance of fractal dimension approaches to particle size distribution, the geomorphological controls exerted by river terraces and floodplains, and the modifying influence of microrelief on hydrothermal soil regimes. Special attention is given to alluvial and solonetzic soil complexes, irrigation-induced transformations, and the role of leguminous and fodder crops in altering soil agrophysical and agrochemical properties. The methodology is grounded in text-based comparative analysis, interpretive synthesis of sedimentological and ecological soil indicators, and conceptual extrapolation of empirical findings presented in the cited literature. Results are discussed in descriptive terms, emphasizing patterns of spatial differentiation, ecological stability, and functional resilience of soils under varying natural and managed conditions. The discussion critically evaluates theoretical implications, addresses limitations inherent in scale-dependent soil analysis, and outlines future research directions integrating fractal theory, geomorphology, and sustainable land management. The article contributes a unified academic framework for understanding soil cover dynamics as a complex, multi-scalar system shaped by both natural processes and human intervention, with implications for ecological assessment, irrigation planning, and agroecosystem sustainability.

Keywords: Soil cover formation, particle size distribution, fractal dimension, geomorphology, river basins, irrigation, agrophysical properties.

Introduction: The soil cover of river basins represents one of the most complex natural systems on Earth, formed through the continuous interaction of lithogenic material, hydrological processes, biological activity, and human land use. Unlike static conceptualizations of soil as a vertically differentiated profile, contemporary soil science increasingly emphasizes the spatial, geomorphological, and ecological context within which soils develop. River basins, in particular, provide an integrative landscape

unit where upstream sediment sources, transport mechanisms, depositional environments, and floodplain dynamics converge to create pronounced heterogeneity in soil properties. This heterogeneity is expressed most clearly in particle size distribution, soil structure, moisture regimes, and nutrient availability, all of which directly influence soil ecological state and agricultural productivity (Wang et al., 2022; Batrachenko, 2021).

Particle size distribution is a foundational characteristic

of soil, governing water retention, aeration, nutrient dynamics, and biological activity. Traditional descriptive approaches to texture classification, while useful, often fail to capture the intrinsic complexity and scale-dependence of sedimentary environments. The application of fractal theory to soil particle size distribution has emerged as a powerful analytical framework capable of revealing underlying regularities in seemingly heterogeneous systems. By quantifying the self-similar organization of soil particles across size scales, fractal dimension analysis allows researchers to link sedimentary processes with geomorphological context at the river basin scale (Wang et al., 2022). This approach represents a conceptual shift from static classification toward dynamic interpretation of soil formation processes.

Geomorphology plays a central role in shaping soil cover patterns. River terraces, floodplains, deltas, and watersheds each impose distinct conditions of sediment deposition, erosion, and hydrological connectivity. Alluvial soils of floodplains and deltas, for example, reflect repeated cycles of inundation and sedimentation, leading to stratified profiles and pronounced zonal differences across climatic regions (Dobrovolsky et al., 2011). In contrast, terrace soils often exhibit greater profile stability but retain inherited sedimentary features linked to earlier fluvial regimes (Gudimovich, 2005). Microrelief elements further complicate this picture by introducing fine-scale variability in moisture and temperature regimes, particularly under irrigated conditions (Shaporina & Chichulin, 2017).

Beyond natural processes, anthropogenic interventions such as irrigation, land reclamation, and crop selection have profoundly altered soil cover functioning in many river basin landscapes. The Mirzachol oasis, for instance, illustrates how long-term irrigation has transformed soil hydrology, salinity regimes, and agrophysical properties, with implications for both productivity and ecological stability (Turdimetov, 2020; Turdimetov, 2022). Within such managed systems, biological inputs, particularly leguminous and fodder crops, play a critical role in modifying soil structure, organic matter dynamics, and nutrient status (Turdimetov et al., 2020; Turdimetov & Sunnatova, 2017).

Despite a substantial body of research addressing individual components of soil cover formation, a significant literature gap remains in the integration of fractal particle size analysis, geomorphological differentiation, and agroecological assessment within a unified river basin framework. Many studies focus narrowly on either sedimentology, soil ecology, or agricultural management, without fully articulating

their interdependence. This article seeks to address this gap by synthesizing theoretical and empirical insights from the provided references into a comprehensive, multi-scalar interpretation of soil cover dynamics. By doing so, it aims to contribute to a deeper understanding of how soil systems function as integrated products of geomorphological history, hydrological processes, and human management.

Methodology

The methodological approach of this study is based on an extensive qualitative and theoretical synthesis of peer-reviewed literature addressing soil particle size distribution, geomorphological differentiation, and agroecological soil properties within river basin contexts. Rather than employing new empirical measurements or quantitative modeling, the study adopts a text-based analytical framework that integrates sedimentological, ecological, and agronomic perspectives as articulated in the referenced works.

Central to the methodology is the conceptual application of fractal dimension theory to soil particle size distribution. Fractal analysis, as discussed by Wang et al. (2022), provides a means of interpreting soil texture as the outcome of sedimentary processes operating across multiple spatial and temporal scales. In this study, fractal dimension is treated as a theoretical indicator linking depositional environment, hydrodynamic energy, and sediment sorting processes. The methodological emphasis lies in interpreting how variations in fractal dimension correspond to different geomorphological settings, such as upstream channel deposits, floodplains, and deltaic environments, rather than calculating numerical values.

Geomorphological analysis forms a second methodological pillar. Insights from studies on river terraces, floodplains, and microrelief are synthesized to construct a conceptual model of soil cover differentiation. River terraces are interpreted through their morphological position, relative age, and sedimentary inheritance, drawing on the classificatory and genetic considerations outlined by Gudimovich (2005). Floodplain and deltaic soils are analyzed in terms of periodic inundation, sediment renewal, and zonal differentiation, following the framework proposed by Dobrovolsky et al. (2011). Microrelief is examined as a modifying factor influencing local hydrothermal regimes, particularly under irrigation, based on the findings of Shaporina and Chichulin (2017) and Konyushkova and Abaturov (2016).

The ecological state of soil cover is assessed through interpretive analysis of soil properties associated with different geomorphological elements. Batrachenko (2021) provides a methodological basis for linking soil

ecological condition with geomorphological context, emphasizing indicators such as structure stability, moisture regime, and susceptibility to degradation. These indicators are discussed descriptively, with attention to their spatial variability and sensitivity to both natural and anthropogenic influences.

Agronomic and land reclamation aspects are incorporated through a synthesis of studies focusing on irrigation duration, land reclamation status, and crop-induced soil modification in the Mirzachol oasis and comparable environments. The works of Turdimetov (2020; 2022) inform the methodological treatment of irrigation as a long-term driver of soil transformation, while studies on leguminous and fodder crops provide insight into biological regulation of soil agrophysical and agrochemical properties (Turdimetov et al., 2020; Turdimetov et al., 2021).

Throughout the methodology, comparative reasoning is employed to highlight similarities and contrasts between different landscape positions and management regimes. This integrative, descriptive approach allows for a comprehensive interpretation of soil cover dynamics without reliance on visual representations or mathematical formulations, ensuring alignment with the methodological constraints of the study.

Results

The synthesized analysis reveals that soil particle size distribution, ecological condition, and agrophysical functioning exhibit systematic variation across river basin landscapes, closely aligned with geomorphological position and land use intensity. At the basin scale, soils formed under high-energy fluvial environments, such as active channels and proximal floodplains, tend to display coarser particle size distributions, reflecting selective transport and deposition processes. Fractal dimension analysis, as interpreted from Wang et al. (2022), indicates that such environments are characterized by lower degrees of fine-particle complexity, corresponding to relatively uniform sediment inputs and frequent disturbance.

In contrast, distal floodplains and deltaic environments accumulate finer sediments over extended periods, resulting in higher textural heterogeneity and more complex fractal organization of soil particles. These soils often exhibit layered profiles, reflecting episodic flooding and sedimentation events, as well as climatic zonality effects described by Dobrovolsky et al. (2011). The increased presence of silt and clay fractions enhances water retention and nutrient-holding capacity but may also predispose soils to compaction and reduced aeration under intensive agricultural use.

River terrace soils occupy an intermediate position,

combining inherited sedimentary characteristics with relative geomorphological stability. According to Gudimovich (2005), terraces represent relict floodplain surfaces that have been disconnected from active fluvial processes. The results synthesized here suggest that terrace soils often maintain balanced particle size distributions, supporting stable soil structure and moderate ecological resilience. However, their properties remain sensitive to microrelief-induced variations in moisture and temperature regimes.

Microrelief emerges as a critical determinant of soil hydrothermal conditions, particularly under irrigated landscapes. The findings of Shaporina and Chichulin (2017) demonstrate that even minor elevation differences can lead to pronounced contrasts in soil moisture availability and thermal regimes. In irrigated watersheds, depressions tend to accumulate moisture, increasing risks of salinization and anaerobic conditions, while elevated microforms may experience moisture deficits and enhanced evaporation. These patterns contribute to fine-scale heterogeneity in soil ecological state, as also observed in solonetzic complexes of the Caspian lowland (Konyushkova & Abaturov, 2016).

From an agroecological perspective, long-term irrigation has been shown to significantly alter soil agrophysical properties. In the Mirzachol oasis, changes in irrigation duration and intensity have led to modifications in soil structure, porosity, and salinity status (Turdimetov, 2020; 2022). These transformations are not uniform but vary according to geomorphological position and initial soil texture. Soils with finer particle size distributions are particularly susceptible to secondary salinization and structural degradation under prolonged irrigation.

Biological interventions, notably the cultivation of leguminous and fodder crops, demonstrate a mitigating influence on soil degradation processes. Studies by Turdimetov et al. (2020) and Turdimetov and Sunnatova (2017) indicate that legumes contribute to improved soil aggregation, enhanced organic matter content, and favorable changes in agrochemical properties. These effects are more pronounced in soils with initially constrained physical properties, suggesting a compensatory role of biological inputs in maintaining soil functional capacity.

Overall, the results highlight a coherent pattern in which soil properties reflect the combined influence of sedimentary environment, geomorphological stability, microrelief variation, and management practices. This integrated perspective underscores the necessity of context-sensitive soil assessment at the river basin scale.

Discussion

The findings synthesized in this study reinforce the conceptualization of soil cover as a dynamic, spatially differentiated system shaped by multiple interacting factors. The application of fractal theory to particle size distribution provides a valuable interpretive lens through which sedimentary history and geomorphological context can be linked to present-day soil functioning. By moving beyond traditional texture classifications, fractal analysis captures the inherent complexity of soil systems and facilitates comparison across disparate environments (Wang et al., 2022).

One of the key theoretical implications concerns the scale-dependence of soil properties. River basin landscapes encompass a hierarchy of spatial units, from microrelief forms to major geomorphological elements such as terraces and floodplains. The results suggest that processes operating at each scale leave discernible imprints on soil structure and ecological state. This multi-scalar perspective challenges reductionist approaches that attempt to generalize soil properties without accounting for landscape position.

The role of microrelief merits particular attention. While often overlooked in broad-scale assessments, microtopographic variation exerts a disproportionate influence on soil moisture and temperature regimes, especially under irrigation. The work of Shaporina and Chichulin (2017) demonstrates that microrelief-induced heterogeneity can either exacerbate or mitigate irrigation-related degradation, depending on management practices. This insight has practical implications for land reclamation and precision agriculture, suggesting that fine-scale terrain analysis should inform irrigation design and crop placement.

Anthropogenic modification emerges as both a driver of degradation and a potential avenue for restoration. Long-term irrigation, as observed in the Mirzachol oasis, has undeniably altered soil physical and chemical properties, raising concerns about sustainability (Turdimetov, 2020). However, the positive effects of leguminous crops on soil structure and fertility highlight the capacity of biological management to counterbalance some negative impacts (Turdimetov et al., 2020). This duality underscores the importance of integrated land management strategies that align agricultural productivity with ecological resilience.

Despite the integrative scope of this study, certain limitations must be acknowledged. The reliance on descriptive synthesis precludes quantitative comparison of fractal dimensions or precise measurement of soil parameters. Additionally, the referenced studies are situated in specific regional contexts, which may limit the direct transferability of

findings to other climatic or geomorphological settings. Nevertheless, the theoretical principles articulated here provide a robust framework for future empirical research.

Future research directions should prioritize the integration of fractal analysis with field-based measurements of soil ecological indicators across diverse river basin systems. Longitudinal studies examining the temporal evolution of soil properties under changing management regimes would further enhance understanding of soil resilience and thresholds of degradation. Moreover, interdisciplinary collaboration between geomorphologists, soil scientists, and agronomists will be essential for developing holistic models of soil cover functioning.

Conclusion

This article has presented a comprehensive, theoretically grounded synthesis of soil cover formation and functioning across river basin landscapes, emphasizing the interrelated roles of particle size distribution, geomorphological differentiation, microrelief, and anthropogenic management. By integrating fractal dimension concepts with geomorphological and agroecological perspectives, the study advances a holistic understanding of soil systems as complex, multi-scalar entities.

The analysis demonstrates that soil properties cannot be meaningfully interpreted in isolation from landscape context. Floodplains, terraces, and irrigated watersheds each impose distinct constraints and opportunities for soil development, reflected in particle size organization, ecological state, and agrophysical performance. Microrelief further modulates these patterns, highlighting the importance of fine-scale variability in soil assessment and management.

Anthropogenic influences, particularly irrigation and crop selection, emerge as powerful modifiers of soil functioning. While irrigation has the potential to induce degradation, strategic use of leguminous and fodder crops offers pathways for enhancing soil structure and fertility. These findings underscore the need for integrated, context-aware land management approaches that balance productivity with long-term soil health.

In conclusion, the synthesis provided here contributes a unified academic framework for understanding soil cover dynamics at the river basin scale. By bridging sedimentology, geomorphology, and agroecology, it lays a conceptual foundation for future research and practical applications aimed at sustainable soil and landscape management.

References

1. Batrachenko, E. A. (2021). Investigation of the soil cover ecological state under the different geomorphological elements conditions. IOP Conference Series: Earth and Environmental Science, 677, 042081.
2. Dobrovolsky, G. V., Balabko, P. N., Stasyuk, N. V., & Bykova, E. P. (2011). Alluvial soils of river floodplains and deltas and their zonal differences. *Journal of Arid Ecosystems*, 17(3), 5–13.
3. Gudimovich, S. S. (2005). River terraces (some remarks on morphology, genesis and classification). *Bulletin of the Tomsk Polytechnic University*, 308(5).
4. Konyushkova, M. V., & Abaturov, B. D. (2016). Features of the microrelief and properties of soils of the solonetzic complex at the late stages of development in the Caspian lowland. *Bulletin of the Soil Institute V. V. Dokuchaev*, 83, 53–60.
5. Shaporina, N. A., & Chichulin, A. V. (2017). Influence of the microrelief on the formation of the hydrothermal field of the soil cover of the watersheds under the Ob plateau under irrigated conditions. *International Journal of Applied and Fundamental Research*, 9, 130–134.
6. Turdimetov, S. M. (2020). Changes in the land reclamation status of the Mirzachol oasis. *Newsletter of Khorezm Mamun Academy*, 11, 264–266.
7. Turdimetov, S. M. (2022). Changes in the duration of irrigation of Mirzachul oasis soils. *Bulletin of Gulistan State University*, 1, 39–47.
8. Turdimetov, S. M., Abdurakhmonov, I., Botirova, L., Zikirov, I., & Ashiralieva, S. (2021). Soil quality assessment principles for vegetable crops. *Annals of the Romanian Society for Cell Biology*, 25(6), 9944–9952.
9. Turdimetov, S. M., Mirsharipova, G. K., Botirova, L. A., Abdujalilova, A. X., & Mustafakulov, D. M. (2020). Impact of legume crops on the agrochemical and agrophysical properties of soil in mirzachol conditions. *Journal of Critical Reviews*, 7(17), 2220–2234.
10. Turdimetov, S. M., & Sunnatova, D. (2017). How plant peas affect soil's agrochemical properties. In *Modern ecological state of the natural environment and scientific-practical aspects of rational nature management* (pp. 779–781).
11. Wang, Y., He, Y., Zhan, J., & Li, Z. (2022). Identification of soil particle size distribution in different sedimentary environments at river basin scale by fractal dimension. *Scientific Reports*, 12, 10960.