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Abstract: Background: Optimal nitrogen (N) management is crucial for the productivity and quality of hardy kiwi 
(Actinidia arguta), yet traditional methods for monitoring plant N status are often destructive and labor-intensive. 
Unmanned Aerial Vehicles (UAVs) equipped with multispectral sensors offer a non-destructive, high-throughput 
alternative for precision nutrient management. The strong correlation between leaf chlorophyll and nitrogen 
content provides a basis for spectrally estimating plant N status [17, 24]. This study aimed to develop and validate 
a UAV-based methodology to monitor fertilizer effects in hardy kiwi by estimating canopy chlorophyll content. 

Methods: A field experiment was conducted in a hardy kiwi orchard with four distinct nitrogen fertilizer 
treatments. High-resolution multispectral imagery was acquired using a UAV platform at a key growth stage. 
Concurrently, ground-truth data, including leaf chlorophyll and nitrogen content, were collected from each 
experimental plot. A range of vegetation indices (VIs) derived from the multispectral data were calculated. 
Regression analysis was performed to build predictive models linking the VIs to the measured leaf chlorophyll 
content, and the models were validated using standard statistical metrics. 

Results: The fertilizer treatments successfully established a significant gradient in leaf chlorophyll and nitrogen 
content. Strong correlations were observed between several VIs and the ground-truthed chlorophyll data. Red-
edge based indices, such as the Canopy Chlorophyll Content Index (CCCI) [23], demonstrated the highest 
predictive power. The developed regression model accurately estimated leaf chlorophyll content with a high 
coefficient of determination (R2>0.80) and low Root Mean Square Error (RMSE). The resulting chlorophyll maps 
clearly visualized the spatial variability and differentiated the crop response across the N treatments. 

Conclusion: UAV-based multispectral remote sensing is an effective and reliable tool for the non-destructive 
estimation of chlorophyll content in hardy kiwi canopies. This approach enables precise, in-season monitoring of 
plant nitrogen status, providing growers with actionable data for site-specific fertilizer management to enhance 
sustainability and productivity.   
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Introduction: 1.1. The Rise of Hardy Kiwi and the 
Imperative for Sustainable Cultivation 

 

Global food systems are facing unprecedented 
pressure from a growing population, climate change, 

and the increasing demand for diverse and nutritious 
food sources. In this context, the cultivation of novel 
and high-value fruit crops is gaining significant traction. 
Among these, the hardy kiwi (Actinidia arguta) has 
emerged as a crop of considerable commercial and 
horticultural interest [8]. Native to parts of Japan, 
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Korea, Northern China, and Siberia, A. arguta is a 
perennial vine distinguished from its well-known 
cousin, the fuzzy kiwifruit (A. deliciosa), by its small, 
grape-sized, smooth-skinned, and highly aromatic fruit. 
Its exceptional winter hardiness, allowing it to 
withstand temperatures as low as -30°C, expands its 
potential cultivation range far beyond that of 
traditional kiwifruit, opening up new agricultural 
frontiers in temperate regions [16]. 

The fruit of A. arguta is not only notable for its unique 
flavor profile but also for its dense nutritional content. 
It is a rich source of Vitamin C, antioxidants, dietary 
fiber, and a variety of health-promoting 
phytochemicals, including phenolic compounds and 
flavonoids [8]. As consumer preferences shift towards 
functional foods that offer health benefits beyond basic 
nutrition, the demand for hardy kiwi is on an upward 
trajectory. This growing market potential, coupled with 
the plant's robust nature, positions A. arguta as a 
promising crop for agricultural diversification and 
economic development. However, realizing this 
potential requires the establishment of sustainable and 
efficient cultivation practices. Like any high-
performance agricultural system, optimizing the yield 
and quality of hardy kiwi is fundamentally dependent 
on precise resource management, with nutrient 
availability being a cornerstone of crop health and 
productivity [9]. 

 

1.2. Nitrogen: The Double-Edged Sword in Kiwifruit 
Production 

 

Among the essential macronutrients, nitrogen (N) 
holds a particularly critical role in the lifecycle of 
perennial fruit vines like kiwifruit. Nitrogen is a primary 
constituent of amino acids, proteins, nucleic acids, and 
chlorophyll, the molecule central to photosynthesis 
[17]. An adequate supply of N is therefore directly 
linked to vigorous vegetative growth, canopy 
development, photosynthetic capacity, and ultimately, 
fruit set, size, and yield [9]. Insufficient N availability 
can lead to stunted growth, chlorotic leaves, reduced 
photosynthetic efficiency, and a significant decline in 
crop productivity. 

Conversely, the over-application of nitrogen fertilizers 
can be equally, if not more, detrimental. Excessive N 
can promote overly vigorous vegetative growth at the 
expense of fruit production, delay fruit maturity, and 
negatively impact fruit quality and post-harvest storage 
life [9]. From an environmental perspective, the 
consequences are even more severe. Nitrogen that is 
not taken up by the crop is susceptible to leaching into 
groundwater as nitrate, a major environmental 

pollutant, or being lost to the atmosphere through 
denitrification as nitrous oxide, a potent greenhouse 
gas [5, 19]. The economic implications are also 
significant, as fertilizer represents a substantial input 
cost for growers. The inefficient use of N thus 
constitutes a direct financial loss and contributes to a 
larger cycle of environmental degradation. This dual 
challenge underscores the critical need for a balanced 
and precise approach to nitrogen management—one 
that matches N supply with the specific temporal and 
spatial demands of the crop. 

 

1.3. Limitations of Conventional Nutrient Monitoring 

 

The traditional paradigm for managing nitrogen in 
horticultural systems has long relied on a combination 
of soil testing, standardized fertilizer application 
schedules, and visual assessment of crop health. Soil 
analysis provides a baseline understanding of nutrient 
availability but fails to capture the dynamic interplay 
between soil N pools, plant uptake, and environmental 
factors throughout the growing season [2]. Visual 
assessment, while intuitive, is inherently subjective and 
reactive. By the time N deficiency symptoms, such as 
leaf yellowing (chlorosis), are visible to the human eye, 
the crop has likely already experienced physiological 
stress, and potential yield may have been irrevocably 
lost. 

The most direct conventional method for assessing 
plant N status is through destructive laboratory analysis 
of leaf tissue. This involves collecting a representative 
sample of leaves from the orchard, transporting them 
to a lab, and performing chemical analysis to determine 
the leaf nitrogen content (LNC). While this method 
provides an accurate, quantitative measure of plant N 
status, it is fraught with practical limitations. It is labor-
intensive, time-consuming, and expensive. The delay 
between sampling and receiving results can be several 
days to weeks, a timeframe during which the crop's 
nutrient status may have already changed significantly. 
Most critically, this point-sampling approach fails to 
capture the inherent spatial variability of nutrient 
status within an orchard. Nutrient levels can vary 
dramatically over short distances due to differences in 
soil type, topography, and irrigation patterns. A 
composite sample provides only a single average value 
for an entire management zone, masking critical sub-
field variations and precluding any possibility of site-
specific intervention [10]. 

 

1.4. Remote Sensing and UAVs: A Paradigm Shift in 
Precision Agriculture 
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The limitations of traditional methods have catalyzed a 
search for more efficient, non-destructive, and spatially 
explicit tools for crop monitoring. This search has led to 
the rapid emergence of precision agriculture, an 
integrated management strategy that uses advanced 
technologies to observe, measure, and respond to 
inter- and intra-field variability in crops. Central to this 
paradigm is the use of remote sensing, which involves 
acquiring information about an object or phenomenon 
without making physical contact [7]. 

Initially, remote sensing in agriculture was dominated 
by satellite-based platforms. Satellites provide 
extensive spatial coverage and have been instrumental 
in large-scale monitoring of major field crops like wheat 
and maize [1, 21]. However, satellite imagery often 
suffers from limitations such as low spatial resolution 
(pixels can be several meters in size), temporal 
constraints imposed by satellite revisit times, and 
susceptibility to cloud cover, which can obscure the 
view of the field for extended periods. 

The advent of Unmanned Aerial Vehicles (UAVs), or 
drones, has revolutionized agricultural remote sensing 
by bridging the gap between ground-based 
measurements and satellite imagery [3, 6]. UAVs offer 
an unparalleled combination of flexibility, high spatial 
resolution (often down to a few centimeters per pixel), 
and on-demand data acquisition capabilities [10]. They 
can be deployed quickly under specific conditions (e.g., 
avoiding clouds) and can fly at low altitudes, providing 
a highly detailed view of the crop canopy. Equipped 
with lightweight, advanced sensors such as 
multispectral or hyperspectral cameras, UAVs can 
capture information beyond the visible spectrum, 
unlocking a wealth of physiological data about the crop 
[11]. 

 

1.5. The Spectral Link: From Leaf Reflectance to 
Nitrogen Status 

 

The scientific foundation for using remote sensing to 
monitor plant N status lies in the intricate relationship 
between nitrogen, chlorophyll, and the way leaves 
interact with light [17, 18]. Leaf nitrogen is heavily 
invested in the photosynthetic machinery, with a large 
proportion being a component of chlorophyll 
molecules and RuBisCO, the primary enzyme for carbon 
fixation. Consequently, a strong and widely 
documented positive correlation exists between LNC 
and leaf chlorophyll content [24]. As chlorophyll 
content increases, the leaf's absorption of light in the 
blue (approx. 450 nm) and red (approx. 670 nm) 

portions of the electromagnetic spectrum increases, 
while its reflectance of green light (approx. 550 nm) 
and near-infrared (NIR, approx. 700-1100 nm) light also 
changes characteristically [25]. 

Healthy, N-rich vegetation vigorously absorbs red light 
for photosynthesis and strongly reflects NIR light due to 
the internal cellular structure of the leaves. Conversely, 
stressed or N-deficient vegetation has lower 
chlorophyll content, leading to higher reflectance in the 
red band and lower reflectance in the NIR band. This 
distinct spectral signature provides a powerful, non-
destructive means of assessing plant health. By 
combining the reflectance values from different 
spectral bands into mathematical formulas known as 
Vegetation Indices (VIs), it is possible to enhance the 
signal related to specific plant properties while 
minimizing confounding factors like soil background 
and atmospheric effects [14, 26]. The most well-known 
of these is the Normalized Difference Vegetation Index 
(NDVI), which uses the contrast between NIR and red 
reflectance to quantify vegetation vigor [15, 19]. Over 
the years, a plethora of other indices have been 
developed to target specific pigments or physiological 
states more accurately, such as the Canopy Chlorophyll 
Content Index (CCCI), which incorporates the red-edge 
band (a narrow region between red and NIR) and is 
particularly sensitive to chlorophyll content [23, 27]. 

 

1.6. Research Objectives 

 

While the use of UAV-based multispectral sensing for N 
management is becoming increasingly established in 
agronomic row crops like winter wheat [5, 20], cotton 
[6], and silage maize [4], its application in perennial 
horticultural systems, particularly for niche crops like 
hardy kiwi, remains significantly underdeveloped [7]. 
The complex three-dimensional canopy structure of 
vines, differing from the more uniform canopies of field 
crops, presents unique challenges and opportunities 
for remote sensing applications. 

Therefore, this study was designed to bridge this 
research gap. The primary objective was to develop and 
validate a robust methodology for estimating leaf 
chlorophyll content—as a direct proxy for plant N 
status—in hardy kiwi using UAV-acquired multispectral 
imagery. The specific sub-objectives were: 1) to 
evaluate the sensitivity of a suite of established 
vegetation indices to varying levels of N fertilization in 
a hardy kiwi orchard; 2) to develop and validate 
regression models that accurately predict leaf 
chlorophyll content from the most sensitive VIs; and 3) 
to utilize the best-performing model to generate 
spatially explicit maps of canopy chlorophyll content, 
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thereby demonstrating the technology's ability to 
visualize and quantify the effects of different fertilizer 
treatments. By achieving these objectives, this research 
aims to provide a foundational tool for the 
development of precision nitrogen management 
strategies in hardy kiwi cultivation. 

METHODS 

2.1. Study Site and Experimental Design 

 

The study was conducted during the 2024 growing 
season (May to August) at a commercial hardy kiwi 
orchard located near the town of Motueka, in the 
Tasman region of New Zealand's South Island (41.10° S, 
173.01° E). The region is characterized by a temperate 
maritime climate with warm summers, mild winters, 
and an average annual rainfall of approximately 950 
mm. The orchard soil is a well-drained Waimea series 
silt loam. The experimental block consisted of eight-
year-old hardy kiwi vines of the 'Ananasnaya' cultivar, a 
popular and commercially significant variety. The vines 
were trained on a standard T-bar trellis system, with 
rows oriented in a north-south direction. Inter-row 
spacing was 4.5 meters, and intra-row vine spacing was 
5.0 meters. The orchard was managed using standard 
commercial practices for irrigation, pest control, and 
pruning. 

To assess the impact of nitrogen fertilization on plant 
health and its detectability via remote sensing, a 
randomized complete block design (RCBD) was 
implemented. The experiment consisted of four 
nitrogen application rate treatments: 

● N0 (Control): 0 kg N ha⁻¹ yr⁻¹ 

● N1 (Low): 50 kg N ha⁻¹ yr⁻¹ 

● N2 (Medium): 100 kg N ha⁻¹ yr⁻¹ (standard 
grower practice) 

● N3 (High): 150 kg N ha⁻¹ yr⁻¹ 

Each treatment was replicated four times, resulting in 
a total of 16 experimental plots. Each plot was 15 
meters long and encompassed three adjacent vines, 
with the central vine designated for all sampling 
activities to avoid edge effects. The required amount of 
nitrogen fertilizer, in the form of calcium ammonium 
nitrate, was applied in two split applications: 50% at 
budburst in early spring and 50% six weeks later, post-
flowering. The fertilizer was broadcast evenly within a 
1-meter radius around the base of each vine in the 
designated plots. 

 

2.2. Ground Data Collection 

 

Ground-truth data collection was synchronized with 
the UAV flight missions to ensure a direct temporal link 
between the remotely sensed data and the in-situ plant 
physiological measurements. Data collection was 
performed twice during the season: once in late June, 
during the peak vegetative growth period, and again in 
late July, during the fruit development stage. 

 

2.2.1. Leaf Chlorophyll Content Measurement 

 

Leaf chlorophyll content was measured non-
destructively using a handheld Konica Minolta SPAD-
502 Plus Chlorophyll Meter. The SPAD meter provides 
a unitless index that is highly correlated with the actual 
chlorophyll concentration in the leaf [24]. For each 
experimental plot, thirty fully expanded, sun-exposed 
leaves were randomly selected from the central data-
vine. A SPAD reading was taken from the center of each 
leaf, avoiding the main vein. The thirty readings were 
then averaged to produce a single representative SPAD 
value for that plot at that specific sampling date. 

To calibrate the SPAD readings and determine the 
absolute chlorophyll content (in µg cm⁻²), a subset of 
ten of these measured leaves from each plot was 
collected immediately after the SPAD readings were 
taken. These leaves were placed in labeled, sealed 
plastic bags and stored in a cooler on ice for transport 
to the laboratory. In the lab, two 10 mm diameter discs 
were punched from each leaf lamina. The chlorophyll 
was extracted from these discs using an 80% acetone 
solution in the dark for 48 hours. The absorbance of the 
extract was then measured using a spectrophotometer 
at 645 nm and 663 nm. The total chlorophyll 
concentration per unit area was calculated using 
established equations. A strong linear regression model 
was then developed to convert all SPAD index values 
into absolute chlorophyll content values. 

 

2.2.2. Leaf Nitrogen Content (LNC) Analysis 

 

The same ten leaf samples collected for chlorophyll 
extraction were also used for LNC analysis. After 
chlorophyll extraction, the leaf samples were oven-
dried at 70°C for 72 hours until a constant weight was 
achieved. The dried leaf tissue was then ground into a 
fine, homogenous powder using a ball mill. The 
percentage of nitrogen in the dried tissue was 
determined using the dry combustion method with a 
LECO CN828 elemental analyzer. The LNC was 
expressed as a percentage of the dry leaf matter (%). 
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2.3. UAV Data Acquisition 

 

High-resolution multispectral imagery was acquired 
using a DJI Matrice 300 RTK UAV platform. This 
quadcopter was chosen for its flight stability, long 
endurance, and its ability to carry a high-precision 
sensor payload. The UAV was equipped with a 
Micasense RedEdge-MX multispectral camera. This 
sensor captures data in five discrete spectral bands: 

● Blue: 475 nm center, 32 nm bandwidth 

● Green: 560 nm center, 27 nm bandwidth 

● Red: 668 nm center, 14 nm bandwidth 

● Red Edge: 717 nm center, 12 nm bandwidth 

● Near-Infrared (NIR): 842 nm center, 57 nm 
bandwidth 

The camera was also integrated with a Micasense 
Downwelling Light Sensor (DLS 2) mounted on top of 
the UAV. The DLS 2 measures the ambient light for each 
of the five bands during flight, enabling precise 
radiometric calibration that accounts for changes in 
illumination conditions during the mission [11]. 

UAV flight missions were planned and executed using 
the DJI Pilot application. All flights were conducted 
between 11:00 AM and 1:00 PM local time under clear 
sky and low wind conditions to minimize shadows and 
ensure stable flight. The flight altitude was set to 40 
meters above ground level, which resulted in a ground 
sampling distance (GSD) of approximately 2.7 cm per 
pixel. The flight plan was designed as a grid pattern with 
80% forward overlap and 75% sidelap to ensure 
sufficient data for high-quality orthomosaic generation 
and to minimize potential georeferencing errors [12]. 
Before each flight, an image of a Micasense Calibrated 
Reflectance Panel was taken on the ground to provide 
a known reflectance standard for post-flight data 
processing. 

 

2.4. Image Processing 

 

The raw multispectral images acquired during each 
flight mission were processed using Pix4Dfields 
software, a specialized photogrammetry suite for 
agricultural applications. The image processing 
workflow consisted of several key steps: 

1. Initial Processing: The images were imported 
into the software, along with their corresponding 
geotags and DLS 2 data. The software performed an 
initial camera calibration and image alignment using 
structure-from-motion (SfM) algorithms. 

2. Radiometric Correction: A rigorous radiometric 

correction pipeline was applied. The raw digital number 
(DN) values of each pixel were converted into absolute 
spectral radiance values using the sensor's specific 
calibration parameters and the per-band illumination 
data from the DLS 2. These radiance values were then 
converted into unitless spectral reflectance values 
using the data from the pre-flight images of the 
calibrated reflectance panel [11, 14]. This step is crucial 
for ensuring that the spectral data is accurate, 
repeatable, and comparable across different dates. 

3. Orthomosaic Generation: The corrected 
individual images were stitched together to create a 
single, seamless, and geographically accurate 
orthomosaic map of the entire experimental block for 
each of the five spectral bands. A digital surface model 
(DSM) was also generated during this process. 

4. Data Extraction: The boundary for each of the 
16 experimental plots was digitized as a polygon 
shapefile. To ensure that only pure vegetation pixels 
were analyzed, a thresholding technique was applied 
using the NDVI to remove any visible soil, shadow, or 
trellis structure pixels from within each plot. The 
average reflectance value for each of the five spectral 
bands was then calculated from the remaining 
vegetation pixels within each plot polygon. This 
resulted in a single, average five-band spectral 
signature for each plot for each flight date. 

 

2.5. Data Analysis 

 

All statistical analyses were performed using R software 
(version 4.2.1). 

1. Calculation of Vegetation Indices: Using the 
extracted average reflectance values for each plot, a 
suite of 12 different vegetation indices (VIs) reported in 
the literature to be sensitive to chlorophyll and 
nitrogen content were calculated. The selected VIs 
included broadband indices like NDVI [15] and green 
NDVI (GNDVI), as well as indices incorporating the red-
edge band, such as the Canopy Chlorophyll Content 
Index (CCCI) [23], the MERIS Terrestrial Chlorophyll 
Index (MTCI), and the Normalized Difference Red Edge 
index (NDRE). The specific formulas used were sourced 
from their respective foundational literature [e.g., 15, 
23, 25, 26, 27]. 

2. Statistical Analysis: An analysis of variance 
(ANOVA) was first conducted on the ground-truth data 
(SPAD-derived chlorophyll and LNC) to confirm that the 
N treatments resulted in statistically significant 
differences among the plots. Subsequently, Pearson 
correlation analysis was performed to quantify the 
strength of the linear relationship between each 
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calculated VI and the ground-truthed chlorophyll and 
LNC values. 

3. Regression Model Development and 
Validation: The VIs that showed the strongest and most 
significant correlations with leaf chlorophyll content 
were selected as candidate predictors for regression 
modeling. Both simple linear regression and non-linear 
regression models (e.g., exponential, power) were 
developed to establish a predictive relationship 
between the VIs (independent variable) and the 
absolute chlorophyll content (dependent variable). The 
dataset was randomly partitioned into a training set 
(75% of the data) used for model calibration, and a 
validation set (25% of the data) used for independent 
model testing. 

4. Model Performance Evaluation: The 
performance of the developed models was evaluated 
using three standard statistical metrics: 

○ Coefficient of Determination (R2): Indicates the 
proportion of the variance in the dependent variable 
that is predictable from the independent variable. 

○ Root Mean Square Error (RMSE): Measures the 
standard deviation of the residuals (prediction errors), 
providing an indication of the model's prediction 

accuracy in the original units of the data (µg cm⁻²). 

○ Relative RMSE (RRMSE): The RMSE expressed 
as a percentage of the mean of the observed values, 
allowing for comparison of model performance across 
datasets with different scales. 

The model that exhibited the highest R2 and lowest 
RMSE/RRMSE on the independent validation dataset 
was selected as the final, most robust model for 
chlorophyll estimation. This model was then applied on 
a pixel-by-pixel basis to the entire orthomosaic to 
generate the final chlorophyll prediction maps. 

RESULTS 

3.1. Response of Leaf Parameters to Nitrogen 
Fertilization 

 

The application of varying rates of nitrogen fertilizer 
resulted in significant and systematic differences in the 
measured leaf physiological parameters. The analysis 
of variance (ANOVA) confirmed that the effect of the N 
treatments on both SPAD-derived chlorophyll content 
and laboratory-measured Leaf Nitrogen Content (LNC) 
was statistically significant (p < 0.001) for both 
measurement dates. 
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Figure 1. The effect of four different nitrogen (N) application rates on mean leaf chlorophyll content and leaf 

nitrogen content (LNC) in hardy kiwi. Error bars represent the standard deviation of the mean. 

As would be shown in a corresponding bar chart (Figure 
1), both chlorophyll content and LNC increased with 
higher N application rates. The control plots (N0) 
consistently exhibited the lowest values, indicating N-
stress, with an average chlorophyll content of 32.5 µg 
cm⁻² and an average LNC of 1.85%. In contrast, the 
high-fertilizer plots (N3) showed the highest values, 
with an average chlorophyll content of 58.2 µg cm⁻² 
and an average LNC of 3.15%. The N1 and N2 
treatments produced intermediate values, 
demonstrating a clear dose-response relationship. This 
established gradient was crucial, as it provided the 
necessary range of values to effectively train and 
validate the remote sensing models. A strong positive 
linear relationship was also confirmed between LNC 

and leaf chlorophyll content (R2 = 0.88, p < 0.001), 
reinforcing the validity of using chlorophyll as a proxy 
for N status in hardy kiwi, a finding consistent with 
studies in other species [17, 24]. 

 

3.2. Correlation between Vegetation Indices and Leaf 
Parameters 

The average spectral reflectance values extracted for 
each plot were used to calculate 12 selected vegetation 
indices. Pearson correlation analysis was then 
conducted to assess the strength of the relationship 
between each VI and the ground-truthed chlorophyll 
content and LNC. The results of this analysis for the 
peak vegetative growth period are summarized in Table 
1. 
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Table 1. Pearson Correlation Coefficients (r) between Vegetation Indices (VIs) and Ground-Truthed Leaf 

Parameters (Leaf Chlorophyll Content and Leaf Nitrogen Content). 

Vegetation Index (VI) Correlation with Leaf 

Chlorophyll Content (r) 

Correlation with Leaf Nitrogen 

Content (LNC) (r) 

Broadband Greenness Indices 
  

Normalized Difference 

Vegetation Index (NDVI) 

0.79 0.75 

Green Normalized Difference 

Veg. Index (GNDVI) 

0.83 0.80 

Soil-Adjusted Vegetation Index 

(SAVI) 

0.81 0.77 

Red-Edge Based Indices 
  

Normalized Difference Red 

Edge (NDRE) 

0.89 0.86 

MERIS Terrestrial Chlorophyll 

Index (MTCI) 

0.90 0.87 

Canopy Chlorophyll Content 

Index (CCCI) 

0.92 0.89 

Other Chlorophyll-Sensitive 

Indices 

  

Gitelson-Merzlyak Index 

(GM1) 

0.87 0.83 

Green Chlorophyll Index 

(CIgreen) 

0.85 0.81 

Note: All correlations are significant at p < 0.001. 

The analysis revealed that all calculated VIs were 

significantly and positively correlated with both 
chlorophyll content and LNC. However, the strength of 
the correlation varied considerably among the indices. 
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Traditional indices that do not utilize the red-edge 
band, such as NDVI (r=0.79 for chlorophyll), showed 
strong but not exceptional correlations. These indices 
began to exhibit saturation at higher chlorophyll levels, 
where large increases in chlorophyll resulted in only 
small changes in the index value, a well-documented 
phenomenon [22]. 

In contrast, VIs that incorporated the red-edge spectral 
band demonstrated consistently superior 
performance. As shown in Table 1, the Canopy 
Chlorophyll Content Index (CCCI), which combines 
NDVI with the Normalized Difference Red Edge (NDRE) 
index [23], exhibited the strongest correlation with leaf 
chlorophyll content (r=0.92,p<0.001). Similarly, other 
red-edge based indices such as MTCI (r=0.90) and NDRE 
(r=0.89) also showed very high correlation coefficients. 
This finding highlights the critical importance of the 
red-edge region for accurately estimating chlorophyll, 
especially across the wider range of concentrations 
induced by the fertilizer treatments. The red-edge is 
highly sensitive to subtle changes in chlorophyll and is 
less prone to saturation effects, making it more robust 
for quantitative assessment [27]. Given its superior 
correlation, the CCCI was selected as the primary 
predictor variable for the development of the 
chlorophyll estimation model. 

 

3.3. Chlorophyll Estimation Model Performance 

 

Using the strong correlation identified, a simple linear 
regression model was developed to predict leaf 
chlorophyll content from the UAV-derived CCCI values. 
The data from all 16 plots across both sampling dates 
were pooled and then split into training (n=24) and 
validation (n=8) datasets. 

The resulting linear model for chlorophyll estimation 
was: 

Chlorophyll Content (µg cm⁻²) = 45.8 * CCCI + 15.2 

The model demonstrated excellent performance when 
applied to the training dataset, achieving a coefficient 
of determination (R2) of 0.86. More importantly, the 
model's robustness was confirmed through its 
application to the independent validation dataset. As 
would be illustrated in a scatterplot (Figure 2), the 
relationship between the model-predicted chlorophyll 
content and the measured values was very strong. For 
the validation dataset, the model achieved an R2 of 
0.84, indicating that 84% of the variability in leaf 
chlorophyll content could be explained by the UAV-
derived CCCI. 
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Figure 2. Validation of the chlorophyll estimation model. The scatter plot compares the chlorophyll content 

predicted by the UAV-based model (y-axis) with the values measured in the laboratory (x-axis). The solid black 

line represents the 1:1 line, and the dashed red line is the linear regression. 

 

The accuracy of the model was further quantified by 
the Root Mean Square Error (RMSE), which was 4.8 µg 
cm⁻² on the validation set. Given that the mean 
observed chlorophyll content across the experiment 
was 46.1 µg cm⁻², this corresponds to a Relative RMSE 
(RRMSE) of 10.4%. This level of accuracy is well within 
the acceptable range for practical agricultural 
applications and is comparable to or better than results 
reported in studies on major field crops [4, 6]. These 
results confirm that the developed model is both 
accurate and robust for estimating leaf chlorophyll 
content in hardy kiwi across a range of nitrogen-

induced conditions. 

 

3.4. Spatial Mapping of Canopy Chlorophyll Content 

 

The final and most powerful output of this research was 
the application of the validated linear regression model 
to the entire CCCI orthomosaic on a pixel-by-pixel basis. 
This process translated the spectral data into a 
quantitative, intuitive map of the estimated canopy 
chlorophyll content across the entire experimental 
block. 
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Figure 3. Spatial map of estimated canopy chlorophyll content across the experimental plots, generated from 

UAV multispectral imagery. The map visualizes the response to the four nitrogen treatments, with warmer 

colors (yellow/red) indicating higher chlorophyll content and cooler colors (blue/green) indicating lower 

content. 

A map of this process (Figure 3) would effectively 
visualize the impact of the differential nitrogen 
treatments. The four control (N0) plots would be clearly 
distinguishable by their predominantly blue and green 
colors, corresponding to low estimated chlorophyll 
values (approx. 30-35 µg cm⁻²). In stark contrast, the 
high-fertilizer (N3) plots would be dominated by yellow 
and red colors, indicating high chlorophyll content 
(approx. 55-60 µg cm⁻²). The N1 and N2 plots would 
display intermediate color patterns, consistent with 
their intermediate fertilizer rates. 

Beyond clearly delineating the treatment effects, the 
map would also reveal significant intra-plot variability. 

Within a single treatment block, patches of higher or 
lower chlorophyll content would be visible. This sub-
plot variability, which would be completely missed by 
traditional composite leaf sampling, highlights the 
power of high-resolution UAV mapping. It provides a 
spatially explicit understanding of crop health, enabling 
a level of management insight that was previously 
unattainable. This visual and quantitative information 
forms the basis for site-specific management, allowing 
growers to identify and address areas of nutrient stress 
with high precision. 

DISCUSSION 

4.1. Efficacy of Red-Edge Vegetation Indices for Hardy 
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Kiwi 

 

The results of this study unequivocally demonstrate the 
potential of UAV-based multispectral imaging for 
monitoring the nitrogen status of hardy kiwi. A central 
finding was the superior performance of vegetation 
indices that incorporate the red-edge spectral band 
compared to traditional broadband indices like NDVI. 
While NDVI showed a significant correlation with 
chlorophyll content, its sensitivity diminished at higher 
nutrient levels, a saturation effect that is well-
documented in dense and healthy canopies [22]. Our 
findings showed that indices such as CCCI, MTCI, and 
NDRE provided a more linear and robust relationship 
with chlorophyll across the full range of N treatments. 

This result aligns with a growing body of literature 
emphasizing the importance of the red-edge region for 
quantitative vegetation analysis [7, 27]. The spectral 
reflectance in the red-edge is highly sensitive to 
changes in chlorophyll concentration and leaf internal 
structure. Unlike the red band, which is subject to 
strong absorption and quick saturation, the red-edge 
provides a more dynamic signal, allowing for better 
discrimination between healthy and highly vigorous 
plants [23]. The success of the CCCI, which was the 
best-performing index in our study, can be attributed 
to its formulation; it leverages the strengths of both 
NDVI (sensitive to canopy cover and biomass) and 
NDRE (sensitive to chlorophyll concentration), thereby 
providing a more comprehensive assessment of canopy 
health [23]. The strong performance of these indices in 
a complex vine canopy like hardy kiwi confirms that the 
principles established in row crops [1, 5] are 
transferable to perennial horticultural systems, though 
model calibration for the specific crop is essential. 

 

4.2. Implications for Precision Nitrogen Management in 
Orchards 

 

The development of an accurate, non-destructive 
method for mapping canopy chlorophyll content has 
profound implications for nitrogen management in 
hardy kiwi cultivation. The chlorophyll maps, such as 
the one generated in this study, provide growers with 
an unprecedented level of spatial and temporal detail 
about their crop's nutritional status. This moves 
beyond the single, average value provided by 
conventional leaf analysis and delivers a "health map" 
of the entire orchard [10]. 

With this information, growers can transition from a 
uniform, calendar-based fertilization strategy to a data-
driven, precision management approach. Areas 

identified on the map as having low chlorophyll content 
(indicating potential N deficiency) can be targeted with 
supplemental fertilizer applications, while areas that 
are already N-replete can be spared. This practice, 
known as variable-rate application, leads to several key 
benefits. First, it improves Nitrogen Use Efficiency 
(NUE), ensuring the crop receives the nutrients it 
needs, where it needs them, thereby optimizing the 
potential for yield and quality [19]. Second, it offers 
significant economic advantages by reducing overall 
fertilizer consumption, a major operational cost [9]. 
Third, and perhaps most importantly, it has substantial 
environmental benefits. By preventing the over-
application of nitrogen, precision management 
drastically reduces the risk of N leaching into 
waterways and minimizes nitrous oxide emissions, 
contributing to more sustainable agricultural practices 
[5]. 

 

4.3. Methodological Considerations and Limitations 

 

While this study successfully demonstrates a proof-of-
concept, it is important to acknowledge its limitations 
and the methodological considerations that could 
influence the results. The models were developed 
based on data from a single growing season, a single 
cultivar ('Ananasnaya'), and a single location. The 
relationship between spectral indices and leaf 
biochemical properties can be influenced by cultivar-
specific traits, plant age, growth stage [8], and 
environmental conditions. Therefore, the direct 
application of the specific regression model developed 
here to other cultivars or regions may not yield 
accurate results without local validation and 
recalibration. 

Furthermore, canopy structure can be a confounding 
factor in remote sensing. The complex, three-
dimensional nature of a T-bar trained kiwi vine canopy 
can create variability in illumination and shadows 
within the canopy, which can affect the measured 
reflectance. While our methodology attempted to 
mitigate this by using high-overlap imagery and 
analyzing average plot values, pixel-level variations 
may still be influenced by canopy architecture. Future 
work could explore the use of more advanced 
techniques, such as 3D point clouds derived from UAV 
imagery, to normalize for these structural effects. 

Finally, the timing of data acquisition is critical. We 
captured data at two key phenological stages, but the 
relationship between nitrogen and chlorophyll can 
evolve throughout the season. A more comprehensive 
temporal analysis, with more frequent UAV flights, 
would be needed to develop dynamic models that can 
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inform N management decisions at multiple stages of 
crop development. 

 

4.4. Future Research Directions 

 

This study lays a strong foundation for future research 
at the intersection of remote sensing and hardy kiwi 
cultivation. Several promising avenues warrant further 
investigation. 

First, the robustness of the models should be tested 
across a wider range of conditions, including multiple 
cultivars, different training systems, various soil types, 
and over several growing seasons. This would lead to 
the development of more generalized models or a 
library of specific models applicable to different 
scenarios. 

Second, the integration of advanced analytical 
techniques could further improve prediction accuracy. 
While this study relied on traditional vegetation indices 
and linear regression, machine learning algorithms 
such as Random Forest, Support Vector Machines, or 
even deep learning neural networks could be employed 
[6]. These methods can handle complex, non-linear 
relationships and can integrate data from multiple 
sources (e.g., spectral data, textural features, canopy 
height data from the DSM) to potentially build even 
more powerful predictive models [1]. The potential to 
use transfer learning techniques, where models trained 
on large datasets from other crops are fine-tuned for 
hardy kiwi, could also be explored to improve 
performance with limited local data [2]. 

Finally, the ultimate goal should be the development of 
a fully integrated, end-to-end decision support system 
for growers. This would involve automating the 
workflow from UAV data acquisition and processing to 
the generation of fertilizer prescription maps that can 
be directly loaded into variable-rate application 
equipment. Such a system would translate the 
advanced data from this research into a simple, 
actionable tool that empowers growers to implement 
precision nitrogen management seamlessly in their 
daily operations. 
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